Sfoglia il codice sorgente

i.segment manual: Landsat7 example added

git-svn-id: https://svn.osgeo.org/grass/grass/branches/releasebranch_7_0@66385 15284696-431f-4ddb-bdfa-cd5b030d7da7
Markus Neteler 9 anni fa
parent
commit
3d30ff2326

+ 45 - 4
imagery/i.segment/i.segment.html

@@ -111,7 +111,10 @@ with the selected <b>similarity</b> method. A value of 1 means
 identical values, perfect fit, and a value of 0 means maximum possible 
 identical values, perfect fit, and a value of 0 means maximum possible 
 distance, worst possible fit.
 distance, worst possible fit.
 
 
-<h2>EXAMPLE</h2>
+<h2>EXAMPLES</h2>
+
+<h3>Segmentation of RGB orthophoto</h3>
+
 This example uses the ortho photograph included in the NC Sample 
 This example uses the ortho photograph included in the NC Sample 
 Dataset. Set up an imagery group:
 Dataset. Set up an imagery group:
 <div class="code"><pre>
 <div class="code"><pre>
@@ -131,7 +134,7 @@ i.segment group=ortho_group output=ortho_segs_l1 threshold=0.02
 </pre></div>
 </pre></div>
 
 
 <center>
 <center>
-<img src="ortho_segs_l1.jpg">
+<img src="i_segment_ortho_segs_l1.jpg">
 </center>
 </center>
 
 
 <p>
 <p>
@@ -149,7 +152,7 @@ i.segment group=ortho_group output=ortho_segs_l5 threshold=0.3 seeds=ortho_segs_
 </pre></div>
 </pre></div>
 
 
 <center>
 <center>
-<img src="ortho_segs_l2_l5.jpg">
+<img src="i_segment_ortho_segs_l2_l5.jpg">
 </center>
 </center>
 
 
 <p>
 <p>
@@ -173,13 +176,51 @@ i.segment group=ortho_group output=ortho_segs_final threshold=0.25 min=10
 </pre></div>
 </pre></div>
 
 
 <center>
 <center>
-<img src="ortho_segs_final.jpg">
+<img src="i_segment_ortho_segs_final.jpg">
 </center>
 </center>
 
 
 <p>
 <p>
 Processing the entire ortho image with nearly 10 million pixels took
 Processing the entire ortho image with nearly 10 million pixels took
 about 450 times more then for the final run.
 about 450 times more then for the final run.
 
 
+<h3>Segmentation of panchromatic channel</h3>
+
+This example uses the panchromatic channel of the Landsat7 scene included
+in the North Carolina sample dataset:
+
+<div class="code"><pre>
+# create group with single channel
+i.group group=singleband input=lsat7_2002_80
+
+# set computational region to Landsat7 PAN band
+g.region raster=lsat7_2002_80 -p
+
+# perform segmentation with minsize=5
+i.segment group=singleband threshold=0.05 minsize=5 \
+  output=lsat7_2002_80_segmented_min5 goodness=lsat7_2002_80_goodness_min5
+
+# perform segmentation with minsize=100
+i.segment group=singleband threshold=0.05 minsize=100
+  output=lsat7_2002_80_segmented_min100 goodness=lsat7_2002_80_goodness_min100
+</pre></div>
+
+<p>
+<center>
+<img src="i_segment_lsat7_pan.png"><br>
+Original panchromatic channel of the Landsat7 scene
+</center>
+
+<p>
+<center>
+<img src="i_segment_lsat7_seg_min5.png"><br>
+Segmented panchromatic channel, minsize=5
+</center>
+<p>
+<center>
+<img src="i_segment_lsat7_seg_min100.png"><br>
+Segmented panchromatic channel, minsize=100
+</center>
+
 <h2>TODO</h2>
 <h2>TODO</h2>
 <h3>Functionality</h3>
 <h3>Functionality</h3>
 <ul>
 <ul>

BIN
imagery/i.segment/i_segment_lsat7_pan.png


BIN
imagery/i.segment/i_segment_lsat7_seg_min100.png


BIN
imagery/i.segment/i_segment_lsat7_seg_min5.png


imagery/i.segment/ortho_segs_final.jpg → imagery/i.segment/i_segment_ortho_segs_final.jpg


imagery/i.segment/ortho_segs_l1.jpg → imagery/i.segment/i_segment_ortho_segs_l1.jpg


imagery/i.segment/ortho_segs_l2_l5.jpg → imagery/i.segment/i_segment_ortho_segs_l2_l5.jpg