Sfoglia il codice sorgente

t.rast.aggregate manual: example template added from ML

git-svn-id: https://svn.osgeo.org/grass/grass/branches/releasebranch_7_0@59541 15284696-431f-4ddb-bdfa-cd5b030d7da7
Markus Neteler 11 anni fa
parent
commit
424b9b195f
1 ha cambiato i file con 36 aggiunte e 10 eliminazioni
  1. 36 10
      temporal/t.rast.aggregate/t.rast.aggregate.html

+ 36 - 10
temporal/t.rast.aggregate/t.rast.aggregate.html

@@ -1,6 +1,7 @@
 <h2>DESCRIPTION</h2>
 <h2>DESCRIPTION</h2>
 
 
-<em>t.rast.aggregate</em> temporally aggregates space time raster datasets by a specific temporal granularity.
+<em>t.rast.aggregate</em> temporally aggregates space time raster datasets
+by a specific temporal granularity.
 This module support <em>absolute</em> and <em>relative time</em>.
 This module support <em>absolute</em> and <em>relative time</em>.
 The temporal granularity of absolute time can be 
 The temporal granularity of absolute time can be 
 <em>seconds, minutes, hours, days, weeks, months</em> or <em>years</em>.
 <em>seconds, minutes, hours, days, weeks, months</em> or <em>years</em>.
@@ -8,16 +9,17 @@ Mixing of granularities eg. "1 year, 3 months 5 days" is not supported.
 In case of relative time the temporal unit of the input space time raster 
 In case of relative time the temporal unit of the input space time raster 
 dataset is used. The granularity must be specified with an integer value. 
 dataset is used. The granularity must be specified with an integer value. 
 <p>
 <p>
-This module is sensitive to the current region and mask settings, hence spatial extent and spatial resolution. 
-In case the registered raster maps of the input space time raster dataset
-have different spatial resolutions, the default nearest neighbor resampling method is used for
-runtime spatial aggregation.
+This module is sensitive to the current region and mask settings, 
+hence spatial extent and spatial resolution. In case the registered 
+raster maps of the input space time raster dataset have different 
+spatial resolutions, the default nearest neighbor resampling method 
+is used for runtime spatial aggregation.
 
 
 <h2>NOTES</h2>
 <h2>NOTES</h2>
 
 
 The raster module <em>r.series</em> is used internally. Hence all aggregate
 The raster module <em>r.series</em> is used internally. Hence all aggregate
-methods of <em>r.series</em> are supported. See the <a href="r.series.html">r.series</a> manpage
-for details.
+methods of <em>r.series</em> are supported. See the
+<a href="r.series.html">r.series</a> manual page for details.
 <p>
 <p>
 This module will shift the start date for each aggregation process depending on the 
 This module will shift the start date for each aggregation process depending on the 
 provided temporal granularity. The following shifts will performed:
 provided temporal granularity. The following shifts will performed:
@@ -31,9 +33,11 @@ provided temporal granularity. The following shifts will performed:
     <li><em>granularity minutes</em>: will start at the first second of a minute, hence 14-08-2012 01:30:30 will be shifted to 14-08-2012 01:30:00</li>
     <li><em>granularity minutes</em>: will start at the first second of a minute, hence 14-08-2012 01:30:30 will be shifted to 14-08-2012 01:30:00</li>
 </ul>
 </ul>
 
 
-<h2>EXAMPLE</h2>
+<h2>EXAMPLES</h2>
 
 
-In this example we create 7 raster maps that will be registered in a single space time
+<h3>EXAMPLE 1</h3>
+
+In this example, we create 7 raster maps that will be registered in a single space time
 raster dataset named <em>precipitation_daily</em> using a daily temporal granularity.
 raster dataset named <em>precipitation_daily</em> using a daily temporal granularity.
 The names of the raster maps are stored in a text file that is used for raster map registration. 
 The names of the raster maps are stored in a text file that is used for raster map registration. 
 <p>
 <p>
@@ -45,7 +49,6 @@ of all raster maps in a week. The sampling option assures that only raster maps
 temporally during a week will be considered for computation: 
 temporally during a week will be considered for computation: 
 
 
 <div class="code"><pre>
 <div class="code"><pre>
-
 MAPS="map_1 map_2 map_3 map_4 map_5 map_6 map_7"
 MAPS="map_1 map_2 map_3 map_4 map_5 map_6 map_7"
 
 
 for map in ${MAPS} ; do
 for map in ${MAPS} ; do
@@ -164,6 +167,29 @@ t.info type=strds input=precipitation_weekly
  +----------------------------------------------------------------------------+
  +----------------------------------------------------------------------------+
 </pre></div>
 </pre></div>
 
 
+
+<h3>EXAMPLE 2</h3>
+
+Example for monthly aggregation:
+
+<div class="code"><pre>
+# January averages
+t.rast.series input=monthly_aggregates \
+    output=jan_average method=average \
+    where="start_time = datetime(start_time, 'start_of_year', '0 month')"
+
+# February averages
+t.rast.series input=monthly_aggregates \
+    output=feb_average method=average \
+    where="start_time = datetime(start_time, 'start_of_year', '1 month')"
+
+# March averages
+t.rast.series input=monthly_aggregates \
+    output=mar_average method=average \
+    where="start_time = datetime(start_time, 'start_of_year', '2 month')"
+</pre></div>
+
+
 <h2>SEE ALSO</h2>
 <h2>SEE ALSO</h2>
 
 
 <em>
 <em>