Bläddra i källkod

v.vol.rst manual: fix section order

git-svn-id: https://svn.osgeo.org/grass/grass/trunk@60918 15284696-431f-4ddb-bdfa-cd5b030d7da7
Markus Neteler 11 år sedan
förälder
incheckning
58473d5f9e
1 ändrade filer med 68 tillägg och 71 borttagningar
  1. 68 71
      vector/v.vol.rst/v.vol.rst.html

+ 68 - 71
vector/v.vol.rst/v.vol.rst.html

@@ -57,71 +57,10 @@ connection of segments, the interpolation function for each segment is
 computed using the points in the given segment
 computed using the points in the given segment
 and the points in its neighborhood. The minimum number of points taken
 and the points in its neighborhood. The minimum number of points taken
 for interpolation is controlled by <b>npmin</b> , the value of which
 for interpolation is controlled by <b>npmin</b> , the value of which
-must
-be larger than <b>segmax</b> and less than 700. This limit of 700 was
+must be larger than <b>segmax</b> and less than 700. This limit of 700 was
 selected to ensure the numerical stability and efficiency of the
 selected to ensure the numerical stability and efficiency of the
 algorithm. 
 algorithm. 
 
 
-<h2>EXAMPLES</h2>
-
-<!-- TODO: find better data. This example is nonsensical :-) -->
-Spearfish example (we first simulate 3D soil range data):
-
-<div class="code"><pre>
-g.region -dp
-# define volume
-g.region res=100 tbres=100 res3=100 b=0 t=1500 -ap3
-
-### First part: generate synthetic 3D data (true 3D soil data preferred)
-# generate random positions from elevation map (2D)
-r.random elevation.10m vector_output=elevrand n=200
-
-# generate synthetic values
-v.db.addcolumn elevrand col="x double precision, y double precision"
-v.to.db elevrand option=coor col=x,y
-v.db.select elevrand
-
-# create new 3D map
-v.in.db elevrand out=elevrand_3d x=x y=y z=value key=cat
-v.info -c elevrand_3d
-v.info -t elevrand_3d
-
-# remove the now superfluous 'x', 'y' and 'value' (z) columns
-v.db.dropcolumn elevrand_3d col=x
-v.db.dropcolumn elevrand_3d col=y
-v.db.dropcolumn elevrand_3d col=value
-
-# add attribute to have data available for 3D interpolation
-# (Soil range types taken from the USDA Soil Survey)
-d.mon wx0
-d.rast soils.range
-d.vect elevrand_3d
-v.db.addcolumn elevrand_3d col="soilrange integer"
-v.what.rast elevrand_3d col=soilrange rast=soils.range
-
-# fix 0 (no data in raster map) to NULL:
-v.db.update elevrand_3d col=soilrange value=NULL where="soilrange=0"
-v.db.select elevrand_3d
-
-# optionally: check 3D points in Paraview
-v.out.vtk input=elevrand_3d output=elevrand_3d.vtk type=point dp=2
-paraview --data=elevrand_3d.vtk
-
-### Second part: 3D interpolation from 3D point data
-# interpolate volume to "soilrange" voxel map
-v.vol.rst input=elevrand_3d wcol=soilrange elev=soilrange zmult=100
-
-# visualize I: in GRASS GIS wxGUI
-g.gui
-# load: 2D raster map: elevation.10m
-#       3D raster map: soilrange
-
-# visualize II: export to Paraview
-r.mapcalc "bottom = 0.0"
-r3.out.vtk -s input=soilrange top=elevation.10m bottom=bottom dp=2 output=volume.vtk
-paraview --data=volume.vtk
-</pre></div>
-
 
 
 <h3>SQL support</h3>
 <h3>SQL support</h3>
 
 
@@ -215,7 +154,6 @@ not necessary.
 "box" given by minimum and maximum coordinates in the input vector map. 
 "box" given by minimum and maximum coordinates in the input vector map. 
 To remedy this, zoom into the area encompassing the input vector data points.
 To remedy this, zoom into the area encompassing the input vector data points.
 
 
-
 <p>For large data sets (thousands of data points), it is suggested to
 <p>For large data sets (thousands of data points), it is suggested to
 zoom into a smaller representative area and test whether the parameters
 zoom into a smaller representative area and test whether the parameters
 chosen (e.g. defaults) are appropriate. 
 chosen (e.g. defaults) are appropriate. 
@@ -223,6 +161,67 @@ chosen (e.g. defaults) are appropriate.
 <p>The user must run <em>g.region</em> before the program to set the
 <p>The user must run <em>g.region</em> before the program to set the
 3D region for interpolation. 
 3D region for interpolation. 
 
 
+
+<h2>EXAMPLES</h2>
+
+<!-- TODO: find better data. This example is nonsensical :-) -->
+Spearfish example (we first simulate 3D soil range data):
+
+<div class="code"><pre>
+g.region -dp
+# define volume
+g.region res=100 tbres=100 res3=100 b=0 t=1500 -ap3
+
+### First part: generate synthetic 3D data (true 3D soil data preferred)
+# generate random positions from elevation map (2D)
+r.random elevation.10m vector_output=elevrand n=200
+
+# generate synthetic values
+v.db.addcolumn elevrand col="x double precision, y double precision"
+v.to.db elevrand option=coor col=x,y
+v.db.select elevrand
+
+# create new 3D map
+v.in.db elevrand out=elevrand_3d x=x y=y z=value key=cat
+v.info -c elevrand_3d
+v.info -t elevrand_3d
+
+# remove the now superfluous 'x', 'y' and 'value' (z) columns
+v.db.dropcolumn elevrand_3d col=x
+v.db.dropcolumn elevrand_3d col=y
+v.db.dropcolumn elevrand_3d col=value
+
+# add attribute to have data available for 3D interpolation
+# (Soil range types taken from the USDA Soil Survey)
+d.mon wx0
+d.rast soils.range
+d.vect elevrand_3d
+v.db.addcolumn elevrand_3d col="soilrange integer"
+v.what.rast elevrand_3d col=soilrange rast=soils.range
+
+# fix 0 (no data in raster map) to NULL:
+v.db.update elevrand_3d col=soilrange value=NULL where="soilrange=0"
+v.db.select elevrand_3d
+
+# optionally: check 3D points in Paraview
+v.out.vtk input=elevrand_3d output=elevrand_3d.vtk type=point dp=2
+paraview --data=elevrand_3d.vtk
+
+### Second part: 3D interpolation from 3D point data
+# interpolate volume to "soilrange" voxel map
+v.vol.rst input=elevrand_3d wcol=soilrange elev=soilrange zmult=100
+
+# visualize I: in GRASS GIS wxGUI
+g.gui
+# load: 2D raster map: elevation.10m
+#       3D raster map: soilrange
+
+# visualize II: export to Paraview
+r.mapcalc "bottom = 0.0"
+r3.out.vtk -s input=soilrange top=elevation.10m bottom=bottom dp=2 output=volume.vtk
+paraview --data=volume.vtk
+</pre></div>
+
 <h2>BUGS</h2>
 <h2>BUGS</h2>
 <b>devi</b> file is written as 2D and deviations are not written as attributes.
 <b>devi</b> file is written as 2D and deviations are not written as attributes.
 
 
@@ -236,8 +235,8 @@ Mitasova, H.</a>, 1999, Spatial Interpolation. In: P.Longley, M.F.
 Goodchild, D.J. Maguire, D.W.Rhind (Eds.), Geographical Information
 Goodchild, D.J. Maguire, D.W.Rhind (Eds.), Geographical Information
 Systems: Principles, Techniques, Management and Applications, Wiley,
 Systems: Principles, Techniques, Management and Applications, Wiley,
 pp.481-492 
 pp.481-492 
-<p>Mitas L., Brown W. M., Mitasova H., 1997, <a
- href="http://www4.ncsu.edu/~hmitaso/gmslab/lcgfin/cg-mitas.html">Role
+<p>Mitas L., Brown W. M., Mitasova H., 1997,
+<a href="http://www4.ncsu.edu/~hmitaso/gmslab/lcgfin/cg-mitas.html">Role
 of dynamic cartography in simulations of landscape processes based on
 of dynamic cartography in simulations of landscape processes based on
 multi-variate fields.</a> Computers and Geosciences, Vol. 23, No. 4,
 multi-variate fields.</a> Computers and Geosciences, Vol. 23, No. 4,
 pp. 437-446 (includes CDROM and WWW: www.elsevier.nl/locate/cgvis) 
 pp. 437-446 (includes CDROM and WWW: www.elsevier.nl/locate/cgvis) 
@@ -248,16 +247,14 @@ New methods and tools for GRASS GIS. International Journal of GIS, 9
 (4),
 (4),
 special issue on Integrating GIS and Environmental modeling, 433-446. 
 special issue on Integrating GIS and Environmental modeling, 433-446. 
 <p> Mitasova, H., Mitas, L., Brown, B., Kosinovsky, I., Baker, T.,
 <p> Mitasova, H., Mitas, L., Brown, B., Kosinovsky, I., Baker, T.,
-Gerdes, D. (1994): <a
- href="http://www4.ncsu.edu/~hmitaso/gmslab/viz/ches.html">Multidimensional
+Gerdes, D. (1994):
+<a href="http://www4.ncsu.edu/~hmitaso/gmslab/viz/ches.html">Multidimensional
 interpolation and visualization in GRASS GIS</a> 
 interpolation and visualization in GRASS GIS</a> 
-<p><a
- href="http://www4.ncsu.edu/~hmitaso/gmslab/papers/lmg.rev1.ps">Mitasova
+<p><a href="http://www4.ncsu.edu/~hmitaso/gmslab/papers/lmg.rev1.ps">Mitasova
 H. and Mitas L. 1993</a>: Interpolation by Regularized Spline with
 H. and Mitas L. 1993</a>: Interpolation by Regularized Spline with
 Tension: I. Theory and Implementation, <i>Mathematical Geology</i> 25,
 Tension: I. Theory and Implementation, <i>Mathematical Geology</i> 25,
 641-655. 
 641-655. 
-<p><a
- href="http://www4.ncsu.edu/~hmitaso/gmslab/papers/hmg.rev1.ps">Mitasova
+<p><a href="http://www4.ncsu.edu/~hmitaso/gmslab/papers/hmg.rev1.ps">Mitasova
 H. and Hofierka J. 1993</a>: Interpolation by Regularized Spline with
 H. and Hofierka J. 1993</a>: Interpolation by Regularized Spline with
 Tension: II. Application to Terrain Modeling and Surface Geometry
 Tension: II. Application to Terrain Modeling and Surface Geometry
 Analysis, <i>Mathematical Geology</i> 25, 657-667. 
 Analysis, <i>Mathematical Geology</i> 25, 657-667.