|
@@ -3,6 +3,11 @@
|
|
|
*
|
|
|
* MODULE: imagery library
|
|
|
* AUTHOR(S): Original author(s) name(s) unknown - written by CERL
|
|
|
+ * Written By: Brian J. Buckley
|
|
|
+ *
|
|
|
+ * At: The Center for Remote Sensing
|
|
|
+ * Michigan State University
|
|
|
+ *
|
|
|
* PURPOSE: Image processing library
|
|
|
* COPYRIGHT: (C) 1999, 2005 by the GRASS Development Team
|
|
|
*
|
|
@@ -12,187 +17,435 @@
|
|
|
*
|
|
|
*****************************************************************************/
|
|
|
|
|
|
-#include <grass/config.h>
|
|
|
+/*
|
|
|
+ * Written: 12/19/91
|
|
|
+ *
|
|
|
+ * Last Update: 12/26/91 Brian J. Buckley
|
|
|
+ * Last Update: 1/24/92 Brian J. Buckley
|
|
|
+ * Added printout of trnfile. Triggered by BDEBUG.
|
|
|
+ * Last Update: 1/27/92 Brian J. Buckley
|
|
|
+ * Fixed bug so that only the active control points were used.
|
|
|
+ *
|
|
|
+ */
|
|
|
+
|
|
|
+
|
|
|
+#include <stdlib.h>
|
|
|
+#include <math.h>
|
|
|
+#include <grass/gis.h>
|
|
|
#include <grass/imagery.h>
|
|
|
#include <signal.h>
|
|
|
|
|
|
-static int floating_exception;
|
|
|
-static void catch(int);
|
|
|
-static double determinant(double, double,
|
|
|
- double, double, double, double, double, double,
|
|
|
- double);
|
|
|
+/* STRUCTURE FOR USE INTERNALLY WITH THESE FUNCTIONS. THESE FUNCTIONS EXPECT
|
|
|
+ SQUARE MATRICES SO ONLY ONE VARIABLE IS GIVEN (N) FOR THE MATRIX SIZE */
|
|
|
|
|
|
-/* find coefficients A,B,C for e2 = A + B*e1 + C*n1
|
|
|
- * also compute the reverse equations
|
|
|
- *
|
|
|
- * return 0 if no points
|
|
|
- * -1 if not solvable
|
|
|
- * 1 if ok
|
|
|
- *
|
|
|
- * method is least squares.
|
|
|
- * the least squares problem reduces to solving the following
|
|
|
- * system of equations for A,B,C
|
|
|
- *
|
|
|
- * s0*A + s1*B + s2*C = x0
|
|
|
- * s1*A + s3*B + s4*C = x1
|
|
|
- * s2*A + s4*B + s5*C = x2
|
|
|
- *
|
|
|
- * use Cramer's rule
|
|
|
- *
|
|
|
- * | x0 s1 s2 | | s0 x0 s2 | | s0 s1 x0 |
|
|
|
- * | x1 s3 s4 | | s1 x1 s4 | | s1 s3 x1 |
|
|
|
- * | x2 s4 s5 | | s2 x2 s5 | | s2 s4 x2 |
|
|
|
- * A = ------------ B = ------------ C = ------------
|
|
|
- * | s0 s1 s2 | | s0 s1 s2 | | s0 s1 s2 |
|
|
|
- * | s1 s3 s4 | | s1 s3 s4 | | s1 s3 s4 |
|
|
|
- * | s2 s4 s5 | | s2 s4 s5 | | s2 s4 s5 |
|
|
|
- *
|
|
|
- */
|
|
|
+struct MATRIX
|
|
|
+{
|
|
|
+ int n; /* SIZE OF THIS MATRIX (N x N) */
|
|
|
+ double *v;
|
|
|
+};
|
|
|
+
|
|
|
+/* CALCULATE OFFSET INTO ARRAY BASED ON R/C */
|
|
|
|
|
|
-int I_compute_georef_equations(struct Control_Points *cp,
|
|
|
- double E12[3], double N12[3], double E21[3],
|
|
|
- double N21[3])
|
|
|
+#define M(row,col) m->v[(((row)-1)*(m->n))+(col)-1]
|
|
|
+
|
|
|
+#define MSUCCESS 1 /* SUCCESS */
|
|
|
+#define MNPTERR 0 /* NOT ENOUGH POINTS */
|
|
|
+#define MUNSOLVABLE -1 /* NOT SOLVABLE */
|
|
|
+#define MMEMERR -2 /* NOT ENOUGH MEMORY */
|
|
|
+#define MPARMERR -3 /* PARAMETER ERROR */
|
|
|
+#define MINTERR -4 /* INTERNAL ERROR */
|
|
|
+
|
|
|
+#define MAXORDER 3 /* HIGHEST SUPPORTED ORDER OF TRANSFORMATION */
|
|
|
+
|
|
|
+/***********************************************************************
|
|
|
+
|
|
|
+ FUNCTION PROTOTYPES FOR STATIC (INTERNAL) FUNCTIONS
|
|
|
+
|
|
|
+************************************************************************/
|
|
|
+
|
|
|
+static int calccoef(struct Control_Points *, double *, double *, int);
|
|
|
+static int calcls(struct Control_Points *, struct MATRIX *, double *,
|
|
|
+ double *, double *, double *);
|
|
|
+static int exactdet(struct Control_Points *, struct MATRIX *, double *,
|
|
|
+ double *, double *, double *);
|
|
|
+static int solvemat(struct MATRIX *, double *, double *, double *, double *);
|
|
|
+static double term(int, double, double);
|
|
|
+
|
|
|
+/***********************************************************************
|
|
|
+
|
|
|
+ TRANSFORM A SINGLE COORDINATE PAIR.
|
|
|
+
|
|
|
+************************************************************************/
|
|
|
+
|
|
|
+int I_georef(double e1, /* EASTING TO BE TRANSFORMED */
|
|
|
+ double n1, /* NORTHING TO BE TRANSFORMED */
|
|
|
+ double *e, /* EASTING, TRANSFORMED */
|
|
|
+ double *n, /* NORTHING, TRANSFORMED */
|
|
|
+ double E[], /* EASTING COEFFICIENTS */
|
|
|
+ double N[], /* NORTHING COEFFICIENTS */
|
|
|
+ int order /* ORDER OF TRANSFORMATION TO BE PERFORMED, MUST MATCH THE
|
|
|
+ ORDER USED TO CALCULATE THE COEFFICIENTS */
|
|
|
+ )
|
|
|
{
|
|
|
- RETSIGTYPE(*sigfpe) (int);
|
|
|
- double s0, s1, s2, s3, s4, s5;
|
|
|
- double x0, x1, x2;
|
|
|
- double det;
|
|
|
- int i;
|
|
|
-
|
|
|
-
|
|
|
- s0 = s1 = s2 = s3 = s4 = s5 = 0.0;
|
|
|
- for (i = 0; i < cp->count; i++) {
|
|
|
- if (cp->status[i] <= 0)
|
|
|
- continue;
|
|
|
- s0 += 1.0;
|
|
|
- s1 += cp->e1[i];
|
|
|
- s2 += cp->n1[i];
|
|
|
- s3 += cp->e1[i] * cp->e1[i];
|
|
|
- s4 += cp->e1[i] * cp->n1[i];
|
|
|
- s5 += cp->n1[i] * cp->n1[i];
|
|
|
- }
|
|
|
- if (s0 < 0.5)
|
|
|
- return 0;
|
|
|
-
|
|
|
- floating_exception = 0;
|
|
|
- sigfpe = signal(SIGFPE, catch);
|
|
|
-
|
|
|
- /* eastings */
|
|
|
- x0 = x1 = x2 = 0.0;
|
|
|
- for (i = 0; i < cp->count; i++) {
|
|
|
- if (cp->status[i] <= 0)
|
|
|
- continue;
|
|
|
- x0 += cp->e2[i];
|
|
|
- x1 += cp->e1[i] * cp->e2[i];
|
|
|
- x2 += cp->n1[i] * cp->e2[i];
|
|
|
- }
|
|
|
+ double e3, e2n, en2, n3, e2, en, n2;
|
|
|
|
|
|
- det = determinant(s0, s1, s2, s1, s3, s4, s2, s4, s5);
|
|
|
- if (det == 0.0) {
|
|
|
- signal(SIGFPE, sigfpe);
|
|
|
- return -1;
|
|
|
- }
|
|
|
- E12[0] = determinant(x0, s1, s2, x1, s3, s4, x2, s4, s5) / det;
|
|
|
- E12[1] = determinant(s0, x0, s2, s1, x1, s4, s2, x2, s5) / det;
|
|
|
- E12[2] = determinant(s0, s1, x0, s1, s3, x1, s2, s4, x2) / det;
|
|
|
-
|
|
|
- /* northings */
|
|
|
- x0 = x1 = x2 = 0.0;
|
|
|
- for (i = 0; i < cp->count; i++) {
|
|
|
- if (cp->status[i] <= 0)
|
|
|
- continue;
|
|
|
- x0 += cp->n2[i];
|
|
|
- x1 += cp->e1[i] * cp->n2[i];
|
|
|
- x2 += cp->n1[i] * cp->n2[i];
|
|
|
- }
|
|
|
+ switch (order) {
|
|
|
+ case 1:
|
|
|
+ *e = E[0] + E[1] * e1 + E[2] * n1;
|
|
|
+ *n = N[0] + N[1] * e1 + N[2] * n1;
|
|
|
+ break;
|
|
|
|
|
|
- det = determinant(s0, s1, s2, s1, s3, s4, s2, s4, s5);
|
|
|
- if (det == 0.0) {
|
|
|
- signal(SIGFPE, sigfpe);
|
|
|
- return -1;
|
|
|
- }
|
|
|
- N12[0] = determinant(x0, s1, s2, x1, s3, s4, x2, s4, s5) / det;
|
|
|
- N12[1] = determinant(s0, x0, s2, s1, x1, s4, s2, x2, s5) / det;
|
|
|
- N12[2] = determinant(s0, s1, x0, s1, s3, x1, s2, s4, x2) / det;
|
|
|
-
|
|
|
- /* the inverse equations */
|
|
|
-
|
|
|
- s0 = s1 = s2 = s3 = s4 = s5 = 0.0;
|
|
|
- for (i = 0; i < cp->count; i++) {
|
|
|
- if (cp->status[i] <= 0)
|
|
|
- continue;
|
|
|
- s0 += 1.0;
|
|
|
- s1 += cp->e2[i];
|
|
|
- s2 += cp->n2[i];
|
|
|
- s3 += cp->e2[i] * cp->e2[i];
|
|
|
- s4 += cp->e2[i] * cp->n2[i];
|
|
|
- s5 += cp->n2[i] * cp->n2[i];
|
|
|
- }
|
|
|
+ case 2:
|
|
|
+ e2 = e1 * e1;
|
|
|
+ n2 = n1 * n1;
|
|
|
+ en = e1 * n1;
|
|
|
|
|
|
- /* eastings */
|
|
|
- x0 = x1 = x2 = 0.0;
|
|
|
- for (i = 0; i < cp->count; i++) {
|
|
|
- if (cp->status[i] <= 0)
|
|
|
- continue;
|
|
|
- x0 += cp->e1[i];
|
|
|
- x1 += cp->e2[i] * cp->e1[i];
|
|
|
- x2 += cp->n2[i] * cp->e1[i];
|
|
|
- }
|
|
|
+ *e = E[0] + E[1] * e1 + E[2] * n1 + E[3] * e2 + E[4] * en + E[5] * n2;
|
|
|
+ *n = N[0] + N[1] * e1 + N[2] * n1 + N[3] * e2 + N[4] * en + N[5] * n2;
|
|
|
+ break;
|
|
|
+
|
|
|
+ case 3:
|
|
|
+ e2 = e1 * e1;
|
|
|
+ en = e1 * n1;
|
|
|
+ n2 = n1 * n1;
|
|
|
+ e3 = e1 * e2;
|
|
|
+ e2n = e2 * n1;
|
|
|
+ en2 = e1 * n2;
|
|
|
+ n3 = n1 * n2;
|
|
|
+
|
|
|
+ *e = E[0] +
|
|
|
+ E[1] * e1 + E[2] * n1 +
|
|
|
+ E[3] * e2 + E[4] * en + E[5] * n2 +
|
|
|
+ E[6] * e3 + E[7] * e2n + E[8] * en2 + E[9] * n3;
|
|
|
+ *n = N[0] +
|
|
|
+ N[1] * e1 + N[2] * n1 +
|
|
|
+ N[3] * e2 + N[4] * en + N[5] * n2 +
|
|
|
+ N[6] * e3 + N[7] * e2n + N[8] * en2 + N[9] * n3;
|
|
|
+ break;
|
|
|
|
|
|
- det = determinant(s0, s1, s2, s1, s3, s4, s2, s4, s5);
|
|
|
- if (det == 0.0) {
|
|
|
- signal(SIGFPE, sigfpe);
|
|
|
- return -1;
|
|
|
+ default:
|
|
|
+ return MPARMERR;
|
|
|
}
|
|
|
- E21[0] = determinant(x0, s1, s2, x1, s3, s4, x2, s4, s5) / det;
|
|
|
- E21[1] = determinant(s0, x0, s2, s1, x1, s4, s2, x2, s5) / det;
|
|
|
- E21[2] = determinant(s0, s1, x0, s1, s3, x1, s2, s4, x2) / det;
|
|
|
-
|
|
|
- /* northings */
|
|
|
- x0 = x1 = x2 = 0.0;
|
|
|
- for (i = 0; i < cp->count; i++) {
|
|
|
- if (cp->status[i] <= 0)
|
|
|
- continue;
|
|
|
- x0 += cp->n1[i];
|
|
|
- x1 += cp->e2[i] * cp->n1[i];
|
|
|
- x2 += cp->n2[i] * cp->n1[i];
|
|
|
+
|
|
|
+ return MSUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+/***********************************************************************
|
|
|
+
|
|
|
+ COMPUTE THE FORWARD AND BACKWARD GEOREFFERENCING COEFFICIENTS
|
|
|
+ BASED ON A SET OF CONTROL POINTS
|
|
|
+
|
|
|
+************************************************************************/
|
|
|
+
|
|
|
+int I_compute_georef_equations(struct Control_Points *cp, double E12[],
|
|
|
+ double N12[], double E21[], double N21[],
|
|
|
+ int order)
|
|
|
+{
|
|
|
+ double *tempptr;
|
|
|
+ int status;
|
|
|
+
|
|
|
+ if (order < 1 || order > MAXORDER)
|
|
|
+ return MPARMERR;
|
|
|
+
|
|
|
+ /* CALCULATE THE FORWARD TRANSFORMATION COEFFICIENTS */
|
|
|
+
|
|
|
+ status = calccoef(cp, E12, N12, order);
|
|
|
+
|
|
|
+ if (status != MSUCCESS)
|
|
|
+ return status;
|
|
|
+
|
|
|
+ /* SWITCH THE 1 AND 2 EASTING AND NORTHING ARRAYS */
|
|
|
+
|
|
|
+ tempptr = cp->e1;
|
|
|
+ cp->e1 = cp->e2;
|
|
|
+ cp->e2 = tempptr;
|
|
|
+ tempptr = cp->n1;
|
|
|
+ cp->n1 = cp->n2;
|
|
|
+ cp->n2 = tempptr;
|
|
|
+
|
|
|
+ /* CALCULATE THE BACKWARD TRANSFORMATION COEFFICIENTS */
|
|
|
+
|
|
|
+ status = calccoef(cp, E21, N21, order);
|
|
|
+
|
|
|
+ /* SWITCH THE 1 AND 2 EASTING AND NORTHING ARRAYS BACK */
|
|
|
+
|
|
|
+ tempptr = cp->e1;
|
|
|
+ cp->e1 = cp->e2;
|
|
|
+ cp->e2 = tempptr;
|
|
|
+ tempptr = cp->n1;
|
|
|
+ cp->n1 = cp->n2;
|
|
|
+ cp->n2 = tempptr;
|
|
|
+
|
|
|
+ return status;
|
|
|
+}
|
|
|
+
|
|
|
+/***********************************************************************
|
|
|
+
|
|
|
+ COMPUTE THE GEOREFFERENCING COEFFICIENTS
|
|
|
+ BASED ON A SET OF CONTROL POINTS
|
|
|
+
|
|
|
+************************************************************************/
|
|
|
+
|
|
|
+static int calccoef(struct Control_Points *cp, double E[], double N[],
|
|
|
+ int order)
|
|
|
+{
|
|
|
+ struct MATRIX m;
|
|
|
+ double *a;
|
|
|
+ double *b;
|
|
|
+ int numactive; /* NUMBER OF ACTIVE CONTROL POINTS */
|
|
|
+ int status, i;
|
|
|
+
|
|
|
+ /* CALCULATE THE NUMBER OF VALID CONTROL POINTS */
|
|
|
+
|
|
|
+ for (i = numactive = 0; i < cp->count; i++) {
|
|
|
+ if (cp->status[i] > 0)
|
|
|
+ numactive++;
|
|
|
}
|
|
|
|
|
|
- det = determinant(s0, s1, s2, s1, s3, s4, s2, s4, s5);
|
|
|
- if (det == 0.0) {
|
|
|
- signal(SIGFPE, sigfpe);
|
|
|
- return -1;
|
|
|
+ /* CALCULATE THE MINIMUM NUMBER OF CONTROL POINTS NEEDED TO DETERMINE
|
|
|
+ A TRANSFORMATION OF THIS ORDER */
|
|
|
+
|
|
|
+ m.n = ((order + 1) * (order + 2)) / 2;
|
|
|
+
|
|
|
+ if (numactive < m.n)
|
|
|
+ return MNPTERR;
|
|
|
+
|
|
|
+ /* INITIALIZE MATRIX */
|
|
|
+
|
|
|
+ m.v = G_calloc(m.n * m.n, sizeof(double));
|
|
|
+ a = G_calloc(m.n, sizeof(double));
|
|
|
+ b = G_calloc(m.n, sizeof(double));
|
|
|
+
|
|
|
+ if (numactive == m.n)
|
|
|
+ status = exactdet(cp, &m, a, b, E, N);
|
|
|
+ else
|
|
|
+ status = calcls(cp, &m, a, b, E, N);
|
|
|
+
|
|
|
+ G_free(m.v);
|
|
|
+ G_free(a);
|
|
|
+ G_free(b);
|
|
|
+
|
|
|
+ return status;
|
|
|
+}
|
|
|
+
|
|
|
+/***********************************************************************
|
|
|
+
|
|
|
+ CALCULATE THE TRANSFORMATION COEFFICIENTS WITH EXACTLY THE MINIMUM
|
|
|
+ NUMBER OF CONTROL POINTS REQUIRED FOR THIS TRANSFORMATION.
|
|
|
+
|
|
|
+************************************************************************/
|
|
|
+
|
|
|
+static int exactdet(struct Control_Points *cp, struct MATRIX *m,
|
|
|
+ double a[], double b[],
|
|
|
+ double E[], /* EASTING COEFFICIENTS */
|
|
|
+ double N[] /* NORTHING COEFFICIENTS */
|
|
|
+ )
|
|
|
+{
|
|
|
+ int pntnow, currow, j;
|
|
|
+
|
|
|
+ currow = 1;
|
|
|
+ for (pntnow = 0; pntnow < cp->count; pntnow++) {
|
|
|
+ if (cp->status[pntnow] > 0) {
|
|
|
+ /* POPULATE MATRIX M */
|
|
|
+
|
|
|
+ for (j = 1; j <= m->n; j++)
|
|
|
+ M(currow, j) = term(j, cp->e1[pntnow], cp->n1[pntnow]);
|
|
|
+
|
|
|
+ /* POPULATE MATRIX A AND B */
|
|
|
+
|
|
|
+ a[currow - 1] = cp->e2[pntnow];
|
|
|
+ b[currow - 1] = cp->n2[pntnow];
|
|
|
+
|
|
|
+ currow++;
|
|
|
+ }
|
|
|
}
|
|
|
- N21[0] = determinant(x0, s1, s2, x1, s3, s4, x2, s4, s5) / det;
|
|
|
- N21[1] = determinant(s0, x0, s2, s1, x1, s4, s2, x2, s5) / det;
|
|
|
- N21[2] = determinant(s0, s1, x0, s1, s3, x1, s2, s4, x2) / det;
|
|
|
|
|
|
- signal(SIGFPE, sigfpe);
|
|
|
- return floating_exception ? -1 : 1;
|
|
|
+ if (currow - 1 != m->n)
|
|
|
+ return MINTERR;
|
|
|
+
|
|
|
+ return solvemat(m, a, b, E, N);
|
|
|
}
|
|
|
|
|
|
-static double determinant(double a, double b, double c, double d, double e,
|
|
|
- double f, double g, double h, double i)
|
|
|
+/***********************************************************************
|
|
|
+
|
|
|
+ CALCULATE THE TRANSFORMATION COEFFICIENTS WITH MORE THAN THE MINIMUM
|
|
|
+ NUMBER OF CONTROL POINTS REQUIRED FOR THIS TRANSFORMATION. THIS
|
|
|
+ ROUTINE USES THE LEAST SQUARES METHOD TO COMPUTE THE COEFFICIENTS.
|
|
|
+
|
|
|
+************************************************************************/
|
|
|
+
|
|
|
+static int calcls(struct Control_Points *cp, struct MATRIX *m,
|
|
|
+ double a[], double b[],
|
|
|
+ double E[], /* EASTING COEFFICIENTS */
|
|
|
+ double N[] /* NORTHING COEFFICIENTS */
|
|
|
+ )
|
|
|
{
|
|
|
- /* compute determinant of 3x3 matrix
|
|
|
- * | a b c |
|
|
|
- * | d e f |
|
|
|
- * | g h i |
|
|
|
- */
|
|
|
- return a * (e * i - f * h) - b * (d * i - f * g) + c * (d * h - e * g);
|
|
|
+ int i, j, n, numactive = 0;
|
|
|
+
|
|
|
+ /* INITIALIZE THE UPPER HALF OF THE MATRIX AND THE TWO COLUMN VECTORS */
|
|
|
+
|
|
|
+ for (i = 1; i <= m->n; i++) {
|
|
|
+ for (j = i; j <= m->n; j++)
|
|
|
+ M(i, j) = 0.0;
|
|
|
+ a[i - 1] = b[i - 1] = 0.0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* SUM THE UPPER HALF OF THE MATRIX AND THE COLUMN VECTORS ACCORDING TO
|
|
|
+ THE LEAST SQUARES METHOD OF SOLVING OVER DETERMINED SYSTEMS */
|
|
|
+
|
|
|
+ for (n = 0; n < cp->count; n++) {
|
|
|
+ if (cp->status[n] > 0) {
|
|
|
+ numactive++;
|
|
|
+ for (i = 1; i <= m->n; i++) {
|
|
|
+ for (j = i; j <= m->n; j++)
|
|
|
+ M(i, j) +=
|
|
|
+ term(i, cp->e1[n], cp->n1[n]) * term(j, cp->e1[n],
|
|
|
+ cp->n1[n]);
|
|
|
+
|
|
|
+ a[i - 1] += cp->e2[n] * term(i, cp->e1[n], cp->n1[n]);
|
|
|
+ b[i - 1] += cp->n2[n] * term(i, cp->e1[n], cp->n1[n]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (numactive <= m->n)
|
|
|
+ return MINTERR;
|
|
|
+
|
|
|
+ /* TRANSPOSE VALUES IN UPPER HALF OF M TO OTHER HALF */
|
|
|
+
|
|
|
+ for (i = 2; i <= m->n; i++)
|
|
|
+ for (j = 1; j < i; j++)
|
|
|
+ M(i, j) = M(j, i);
|
|
|
+
|
|
|
+ return solvemat(m, a, b, E, N);
|
|
|
}
|
|
|
|
|
|
-static void catch(int n)
|
|
|
+/***********************************************************************
|
|
|
+
|
|
|
+ CALCULATE THE X/Y TERM BASED ON THE TERM NUMBER
|
|
|
+
|
|
|
+ ORDER\TERM 1 2 3 4 5 6 7 8 9 10
|
|
|
+ 1 e0n0 e1n0 e0n1
|
|
|
+ 2 e0n0 e1n0 e0n1 e2n0 e1n1 e0n2
|
|
|
+ 3 e0n0 e1n0 e0n1 e2n0 e1n1 e0n2 e3n0 e2n1 e1n2 e0n3
|
|
|
+
|
|
|
+************************************************************************/
|
|
|
+
|
|
|
+static double term(int term, double e, double n)
|
|
|
{
|
|
|
- floating_exception = 1;
|
|
|
- signal(n, catch);
|
|
|
+ switch (term) {
|
|
|
+ case 1:
|
|
|
+ return 1.0;
|
|
|
+ case 2:
|
|
|
+ return e;
|
|
|
+ case 3:
|
|
|
+ return n;
|
|
|
+ case 4:
|
|
|
+ return e * e;
|
|
|
+ case 5:
|
|
|
+ return e * n;
|
|
|
+ case 6:
|
|
|
+ return n * n;
|
|
|
+ case 7:
|
|
|
+ return e * e * e;
|
|
|
+ case 8:
|
|
|
+ return e * e * n;
|
|
|
+ case 9:
|
|
|
+ return e * n * n;
|
|
|
+ case 10:
|
|
|
+ return n * n * n;
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0.0;
|
|
|
}
|
|
|
|
|
|
-int I_georef(double e1, double n1,
|
|
|
- double *e2, double *n2, double E[3], double N[3])
|
|
|
+/***********************************************************************
|
|
|
+
|
|
|
+ SOLVE FOR THE 'E' AND 'N' COEFFICIENTS BY USING A SOMEWHAT MODIFIED
|
|
|
+ GAUSSIAN ELIMINATION METHOD.
|
|
|
+
|
|
|
+ | M11 M12 ... M1n | | E0 | | a0 |
|
|
|
+ | M21 M22 ... M2n | | E1 | = | a1 |
|
|
|
+ | . . . . | | . | | . |
|
|
|
+ | Mn1 Mn2 ... Mnn | | En-1 | | an-1 |
|
|
|
+
|
|
|
+ and
|
|
|
+
|
|
|
+ | M11 M12 ... M1n | | N0 | | b0 |
|
|
|
+ | M21 M22 ... M2n | | N1 | = | b1 |
|
|
|
+ | . . . . | | . | | . |
|
|
|
+ | Mn1 Mn2 ... Mnn | | Nn-1 | | bn-1 |
|
|
|
+
|
|
|
+************************************************************************/
|
|
|
+
|
|
|
+static int solvemat(struct MATRIX *m, double a[], double b[], double E[],
|
|
|
+ double N[])
|
|
|
{
|
|
|
- *e2 = E[0] + E[1] * e1 + E[2] * n1;
|
|
|
- *n2 = N[0] + N[1] * e1 + N[2] * n1;
|
|
|
+ int i, j, i2, j2, imark;
|
|
|
+ double factor, temp;
|
|
|
+ double pivot; /* ACTUAL VALUE OF THE LARGEST PIVOT CANDIDATE */
|
|
|
+
|
|
|
+ for (i = 1; i <= m->n; i++) {
|
|
|
+ j = i;
|
|
|
+
|
|
|
+ /* find row with largest magnitude value for pivot value */
|
|
|
+
|
|
|
+ pivot = M(i, j);
|
|
|
+ imark = i;
|
|
|
+ for (i2 = i + 1; i2 <= m->n; i2++) {
|
|
|
+ temp = fabs(M(i2, j));
|
|
|
+ if (temp > fabs(pivot)) {
|
|
|
+ pivot = M(i2, j);
|
|
|
+ imark = i2;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if the pivot is very small then the points are nearly co-linear */
|
|
|
+ /* co-linear points result in an undefined matrix, and nearly */
|
|
|
+ /* co-linear points results in a solution with rounding error */
|
|
|
+
|
|
|
+ if (pivot == 0.0)
|
|
|
+ return MUNSOLVABLE;
|
|
|
+
|
|
|
+ /* if row with highest pivot is not the current row, switch them */
|
|
|
+
|
|
|
+ if (imark != i) {
|
|
|
+ for (j2 = 1; j2 <= m->n; j2++) {
|
|
|
+ temp = M(imark, j2);
|
|
|
+ M(imark, j2) = M(i, j2);
|
|
|
+ M(i, j2) = temp;
|
|
|
+ }
|
|
|
+
|
|
|
+ temp = a[imark - 1];
|
|
|
+ a[imark - 1] = a[i - 1];
|
|
|
+ a[i - 1] = temp;
|
|
|
+
|
|
|
+ temp = b[imark - 1];
|
|
|
+ b[imark - 1] = b[i - 1];
|
|
|
+ b[i - 1] = temp;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* compute zeros above and below the pivot, and compute
|
|
|
+ values for the rest of the row as well */
|
|
|
+
|
|
|
+ for (i2 = 1; i2 <= m->n; i2++) {
|
|
|
+ if (i2 != i) {
|
|
|
+ factor = M(i2, j) / pivot;
|
|
|
+ for (j2 = j; j2 <= m->n; j2++)
|
|
|
+ M(i2, j2) -= factor * M(i, j2);
|
|
|
+ a[i2 - 1] -= factor * a[i - 1];
|
|
|
+ b[i2 - 1] -= factor * b[i - 1];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* SINCE ALL OTHER VALUES IN THE MATRIX ARE ZERO NOW, CALCULATE THE
|
|
|
+ COEFFICIENTS BY DIVIDING THE COLUMN VECTORS BY THE DIAGONAL VALUES. */
|
|
|
+
|
|
|
+ for (i = 1; i <= m->n; i++) {
|
|
|
+ E[i - 1] = a[i - 1] / M(i, i);
|
|
|
+ N[i - 1] = b[i - 1] / M(i, i);
|
|
|
+ }
|
|
|
|
|
|
- return 0;
|
|
|
+ return MSUCCESS;
|
|
|
}
|