|
@@ -1,536 +0,0 @@
|
|
|
-/*!
|
|
|
- * \file rbtree.c
|
|
|
- *
|
|
|
- * \brief binary search tree
|
|
|
- *
|
|
|
- * Generic balanced binary search tree (Red Black Tree) implementation
|
|
|
- *
|
|
|
- * (C) 2009 by the GRASS Development Team
|
|
|
- *
|
|
|
- * This program is free software under the GNU General Public License
|
|
|
- * (>=v2). Read the file COPYING that comes with GRASS for details.
|
|
|
- *
|
|
|
- * \author Original author Julienne Walker 2003, 2008
|
|
|
- * GRASS implementation Markus Metz, 2009
|
|
|
- */
|
|
|
-
|
|
|
-/* balanced binary search tree implementation
|
|
|
- *
|
|
|
- * this one is a Red Black Tree, the bare version, no parent pointers, no threads
|
|
|
- * The core code comes from Julienne Walker's tutorials on binary search trees
|
|
|
- * original license: public domain
|
|
|
- * http://eternallyconfuzzled.com/tuts/datastructures/jsw_tut_rbtree.aspx
|
|
|
- * some ideas come from libavl (GPL >= 2)
|
|
|
- * I could have used some off-the-shelf solution, but that's boring
|
|
|
- *
|
|
|
- * Red Black Trees are used to maintain a data structure with
|
|
|
- * search, insertion and deletion in O(log N) time
|
|
|
- */
|
|
|
-
|
|
|
-#include <assert.h>
|
|
|
-#include <stdlib.h>
|
|
|
-#include <string.h>
|
|
|
-#include <grass/gis.h>
|
|
|
-#include <grass/glocale.h>
|
|
|
-#include <grass/vect/rbtree.h>
|
|
|
-
|
|
|
-/* internal functions */
|
|
|
-void rbtree_destroy2(struct RB_NODE *);
|
|
|
-struct RB_NODE *rbtree_single(struct RB_NODE *, int);
|
|
|
-struct RB_NODE *rbtree_double(struct RB_NODE *, int);
|
|
|
-void *rbtree_first(struct RB_TRAV *);
|
|
|
-void *rbtree_next(struct RB_TRAV *);
|
|
|
-struct RB_NODE *rbtree_make_node(size_t, void *);
|
|
|
-int is_red(struct RB_NODE *);
|
|
|
-
|
|
|
-
|
|
|
-/* create new tree and initialize
|
|
|
- * returns pointer to new tree, NULL for memory allocation error
|
|
|
- */
|
|
|
-struct RB_TREE *rbtree_create(rb_compare_fn *compare, size_t rb_datasize)
|
|
|
-{
|
|
|
- struct RB_TREE *tree = G_malloc(sizeof(*tree));
|
|
|
-
|
|
|
- if (tree == NULL) {
|
|
|
- G_warning("RB tree: Out of memory!");
|
|
|
- return NULL;
|
|
|
- }
|
|
|
-
|
|
|
- assert(compare);
|
|
|
-
|
|
|
- tree->datasize = rb_datasize;
|
|
|
- tree->rb_compare = compare;
|
|
|
- tree->count = 0;
|
|
|
- tree->root = NULL;
|
|
|
-
|
|
|
- return tree;
|
|
|
-}
|
|
|
-
|
|
|
-/* add an item to a tree
|
|
|
- * non-recursive top-down insertion
|
|
|
- * the algorithm does not allow duplicates and also does not warn about a duplicate
|
|
|
- * returns 1 on success, 0 on failure
|
|
|
- */
|
|
|
-int rbtree_insert(struct RB_TREE *tree, void *data)
|
|
|
-{
|
|
|
- assert(tree && data);
|
|
|
-
|
|
|
- if (tree->root == NULL) {
|
|
|
- /* create a new root node for tree */
|
|
|
- tree->root = rbtree_make_node(tree->datasize, data);
|
|
|
- if (tree->root == NULL)
|
|
|
- return 0;
|
|
|
- }
|
|
|
- else {
|
|
|
- struct RB_NODE head = {0}; /* False tree root */
|
|
|
-
|
|
|
- struct RB_NODE *g, *t; /* Grandparent & parent */
|
|
|
- struct RB_NODE *p, *q; /* Iterator & parent */
|
|
|
- int dir = 0, last = 0;
|
|
|
-
|
|
|
- /* Set up helpers */
|
|
|
- t = &head;
|
|
|
- g = p = NULL;
|
|
|
- q = t->link[1] = tree->root;
|
|
|
-
|
|
|
- /* Search down the tree */
|
|
|
- for ( ; ; ) {
|
|
|
- if (q == NULL) {
|
|
|
- /* Insert new node at the bottom */
|
|
|
- p->link[dir] = q = rbtree_make_node(tree->datasize, data);
|
|
|
- if (q == NULL)
|
|
|
- return 0;
|
|
|
- }
|
|
|
- else if (is_red(q->link[0]) && is_red(q->link[1])) {
|
|
|
- /* Color flip */
|
|
|
- q->red = 1;
|
|
|
- q->link[0]->red = 0;
|
|
|
- q->link[1]->red = 0;
|
|
|
- }
|
|
|
-
|
|
|
- /* Fix red violation */
|
|
|
- if (is_red(q) && is_red(p)) {
|
|
|
- int dir2 = t->link[1] == g;
|
|
|
-
|
|
|
- if (q == p->link[last])
|
|
|
- t->link[dir2] = rbtree_single(g, !last);
|
|
|
- else
|
|
|
- t->link[dir2] = rbtree_double(g, !last);
|
|
|
- }
|
|
|
-
|
|
|
- last = dir;
|
|
|
- dir = tree->rb_compare(q->data, data);
|
|
|
-
|
|
|
- /* Stop if found. This check also disallows duplicates in the tree */
|
|
|
- if (dir == 0)
|
|
|
- break;
|
|
|
-
|
|
|
- dir = dir < 0;
|
|
|
-
|
|
|
- /* Move the helpers down */
|
|
|
- if (g != NULL)
|
|
|
- t = g;
|
|
|
-
|
|
|
- g = p, p = q;
|
|
|
- q = q->link[dir];
|
|
|
- }
|
|
|
-
|
|
|
- /* Update root */
|
|
|
- tree->root = head.link[1];
|
|
|
- }
|
|
|
-
|
|
|
- /* Make root black */
|
|
|
- tree->root->red = 0;
|
|
|
-
|
|
|
- tree->count++;
|
|
|
-
|
|
|
- return 1;
|
|
|
-}
|
|
|
-
|
|
|
-/* remove an item from a tree that matches given data
|
|
|
- * non-recursive top-down removal
|
|
|
- * returns 1 on successful removal
|
|
|
- * returns 0 if data item was not found
|
|
|
- */
|
|
|
-int rbtree_remove(struct RB_TREE *tree, const void *data)
|
|
|
-{
|
|
|
- struct RB_NODE head = {0}; /* False tree root */
|
|
|
- struct RB_NODE *q, *p, *g; /* Helpers */
|
|
|
- struct RB_NODE *f = NULL; /* Found item */
|
|
|
- int dir = 1, removed = 0;
|
|
|
-
|
|
|
- assert(tree && data);
|
|
|
-
|
|
|
- if (tree->root == NULL) {
|
|
|
- return 0; /* empty tree, nothing to remove */
|
|
|
- }
|
|
|
-
|
|
|
- /* Set up helpers */
|
|
|
- q = &head;
|
|
|
- g = p = NULL;
|
|
|
- q->link[1] = tree->root;
|
|
|
-
|
|
|
- /* Search and push a red down */
|
|
|
- while (q->link[dir] != NULL) {
|
|
|
- int last = dir;
|
|
|
-
|
|
|
- /* Update helpers */
|
|
|
- g = p, p = q;
|
|
|
- q = q->link[dir];
|
|
|
- dir = tree->rb_compare(q->data, data);
|
|
|
-
|
|
|
- /* Save found node */
|
|
|
- if (dir == 0)
|
|
|
- f = q;
|
|
|
-
|
|
|
- dir = dir < 0;
|
|
|
-
|
|
|
- /* Push the red node down */
|
|
|
- if (!is_red(q) && !is_red(q->link[dir])) {
|
|
|
- if (is_red(q->link[!dir]))
|
|
|
- p = p->link[last] = rbtree_single(q, dir);
|
|
|
- else if (!is_red(q->link[!dir])) {
|
|
|
- struct RB_NODE *s = p->link[!last];
|
|
|
-
|
|
|
- if (s != NULL) {
|
|
|
- if (!is_red(s->link[!last]) &&
|
|
|
- !is_red(s->link[last])) {
|
|
|
- /* Color flip */
|
|
|
- p->red = 0;
|
|
|
- s->red = 1;
|
|
|
- q->red = 1;
|
|
|
- }
|
|
|
- else {
|
|
|
- int dir2 = g->link[1] == p;
|
|
|
-
|
|
|
- if (is_red(s->link[last]))
|
|
|
- g->link[dir2] = rbtree_double(p, last);
|
|
|
- else if (is_red(s->link[!last]))
|
|
|
- g->link[dir2] = rbtree_single(p, last);
|
|
|
-
|
|
|
- /* Ensure correct coloring */
|
|
|
- q->red = g->link[dir2]->red = 1;
|
|
|
- g->link[dir2]->link[0]->red = 0;
|
|
|
- g->link[dir2]->link[1]->red = 0;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Replace and remove if found */
|
|
|
- if (f != NULL) {
|
|
|
- G_free(f->data);
|
|
|
- f->data = q->data;
|
|
|
- p->link[p->link[1] == q] = q->link[q->link[0] == NULL];
|
|
|
- G_free(q);
|
|
|
- tree->count--;
|
|
|
- removed = 1;
|
|
|
- }
|
|
|
- else
|
|
|
- G_debug(2, "RB tree: data not found in search tree");
|
|
|
-
|
|
|
- /* Update root and make it black */
|
|
|
- tree->root = head.link[1];
|
|
|
- if ( tree->root != NULL)
|
|
|
- tree->root->red = 0;
|
|
|
-
|
|
|
- return removed;
|
|
|
-}
|
|
|
-
|
|
|
-/* find data item in tree
|
|
|
- * returns pointer to data item if found else NULL
|
|
|
- */
|
|
|
-void *rbtree_find(struct RB_TREE *tree, const void *data)
|
|
|
-{
|
|
|
- struct RB_NODE *curr_node = tree->root;
|
|
|
- int cmp = 0;
|
|
|
-
|
|
|
- assert(tree && data);
|
|
|
-
|
|
|
- while (curr_node != NULL) {
|
|
|
- cmp = tree->rb_compare(curr_node->data, data);
|
|
|
- if (cmp == 0)
|
|
|
- return curr_node->data; /* found */
|
|
|
- else {
|
|
|
- curr_node = curr_node->link[cmp < 0];
|
|
|
- }
|
|
|
- }
|
|
|
- return NULL;
|
|
|
-}
|
|
|
-
|
|
|
-/* initialize tree traversal
|
|
|
- * (re-)sets trav structure
|
|
|
- * returns 0
|
|
|
- */
|
|
|
-int rbtree_init_trav(struct RB_TRAV *trav, struct RB_TREE *tree)
|
|
|
-{
|
|
|
- assert(trav && tree);
|
|
|
-
|
|
|
- trav->tree = tree;
|
|
|
- trav->curr_node = tree->root;
|
|
|
- trav->first = 1;
|
|
|
- trav->top = 0;
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/* traverse the tree in ascending order
|
|
|
- * useful to get all items in the tree non-recursively
|
|
|
- * struct RB_TRAV *trav needs to be initialized first
|
|
|
- * returns pointer to data, NULL when finished
|
|
|
- */
|
|
|
-void *rbtree_traverse(struct RB_TRAV *trav)
|
|
|
-{
|
|
|
- assert(trav);
|
|
|
-
|
|
|
- if (trav->curr_node == NULL) {
|
|
|
- if (trav->first)
|
|
|
- G_debug(1, "RB tree: empty tree");
|
|
|
- else
|
|
|
- G_debug(1, "RB tree: finished traversing");
|
|
|
-
|
|
|
- return NULL;
|
|
|
- }
|
|
|
-
|
|
|
- if (!trav->first)
|
|
|
- return rbtree_next(trav);
|
|
|
- else {
|
|
|
- trav->first = 0;
|
|
|
- return rbtree_first(trav);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/* find start point to traverse the tree in ascending order
|
|
|
- * useful to get a selection of items in the tree
|
|
|
- * magnitudes faster than traversing the whole tree
|
|
|
- * may return first item that's smaller or first item that's larger
|
|
|
- * struct RB_TRAV *trav needs to be initialized first
|
|
|
- * returns pointer to data, NULL when finished
|
|
|
- */
|
|
|
-void *rbtree_traverse_start(struct RB_TRAV *trav, const void *data)
|
|
|
-{
|
|
|
- int dir = 0;
|
|
|
-
|
|
|
- assert(trav && data);
|
|
|
-
|
|
|
- if (trav->curr_node == NULL) {
|
|
|
- if (trav->first)
|
|
|
- G_warning("RB tree: empty tree");
|
|
|
- else
|
|
|
- G_warning("RB tree: finished traversing");
|
|
|
-
|
|
|
- return NULL;
|
|
|
- }
|
|
|
-
|
|
|
- if (!trav->first)
|
|
|
- return rbtree_next(trav);
|
|
|
-
|
|
|
- /* else first time, get start node */
|
|
|
-
|
|
|
- trav->first = 0;
|
|
|
- trav->top = 0;
|
|
|
-
|
|
|
- while (trav->curr_node != NULL) {
|
|
|
- dir = trav->tree->rb_compare(trav->curr_node->data, data);
|
|
|
- /* exact match, great! */
|
|
|
- if (dir == 0)
|
|
|
- return trav->curr_node->data;
|
|
|
- else {
|
|
|
- dir = dir < 0;
|
|
|
- /* end of branch, also reached if
|
|
|
- * smallest item is larger than search template or
|
|
|
- * largest item is smaller than search template */
|
|
|
- if (trav->curr_node->link[dir] == NULL)
|
|
|
- return trav->curr_node->data;
|
|
|
-
|
|
|
- trav->up[trav->top++] = trav->curr_node;
|
|
|
- trav->curr_node = trav->curr_node->link[dir];
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return NULL; /* should not happen */
|
|
|
-}
|
|
|
-
|
|
|
-/* two functions needed to fully traverse the tree: initialize and continue
|
|
|
- * useful to get all items in the tree non-recursively
|
|
|
- * this one here uses a stack
|
|
|
- * parent pointers or threads would also be possible
|
|
|
- * but these would need to be added to RB_NODE
|
|
|
- * -> more memory needed for standard operations
|
|
|
- */
|
|
|
-
|
|
|
-/* start traversing the tree
|
|
|
- * returns pointer to smallest data item
|
|
|
- */
|
|
|
-void *rbtree_first(struct RB_TRAV *trav)
|
|
|
-{
|
|
|
- /* get smallest item */
|
|
|
- while (trav->curr_node->link[0] != NULL) {
|
|
|
- trav->up[trav->top++] = trav->curr_node;
|
|
|
- trav->curr_node = trav->curr_node->link[0];
|
|
|
- }
|
|
|
-
|
|
|
- return trav->curr_node->data; /* return smallest item */
|
|
|
-}
|
|
|
-
|
|
|
-/* continue traversing the tree in ascending order
|
|
|
- * returns pointer to data item, NULL when finished
|
|
|
- */
|
|
|
-void *rbtree_next(struct RB_TRAV *trav)
|
|
|
-{
|
|
|
- if (trav->curr_node->link[1] != NULL) {
|
|
|
- /* something on the right side: larger item */
|
|
|
- trav->up[trav->top++] = trav->curr_node;
|
|
|
- trav->curr_node = trav->curr_node->link[1];
|
|
|
-
|
|
|
- /* go down, find smallest item in this branch */
|
|
|
- while (trav->curr_node->link[0] != NULL) {
|
|
|
- trav->up[trav->top++] = trav->curr_node;
|
|
|
- trav->curr_node = trav->curr_node->link[0];
|
|
|
- }
|
|
|
- }
|
|
|
- else {
|
|
|
- /* at smallest item in this branch, go back up */
|
|
|
- struct RB_NODE *last;
|
|
|
- do {
|
|
|
- if (trav->top == 0) {
|
|
|
- trav->curr_node = NULL;
|
|
|
- break;
|
|
|
- }
|
|
|
- last = trav->curr_node;
|
|
|
- trav->curr_node = trav->up[--trav->top];
|
|
|
- } while (last == trav->curr_node->link[1]);
|
|
|
- }
|
|
|
-
|
|
|
- if (trav->curr_node != NULL) {
|
|
|
- return trav->curr_node->data;
|
|
|
- }
|
|
|
- else
|
|
|
- return NULL; /* finished traversing */
|
|
|
-}
|
|
|
-
|
|
|
-/* destroy the tree */
|
|
|
-void rbtree_destroy(struct RB_TREE *tree) {
|
|
|
- rbtree_destroy2(tree->root);
|
|
|
- G_free(tree);
|
|
|
-}
|
|
|
-
|
|
|
-void rbtree_destroy2(struct RB_NODE *root)
|
|
|
-{
|
|
|
- if (root != NULL) {
|
|
|
- rbtree_destroy2(root->link[0]);
|
|
|
- rbtree_destroy2(root->link[1]);
|
|
|
- G_free(root->data);
|
|
|
- G_free(root);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/* used for debugging: check for errors in tree structure */
|
|
|
-int rbtree_debug(struct RB_TREE *tree, struct RB_NODE *root)
|
|
|
-{
|
|
|
- int lh, rh;
|
|
|
-
|
|
|
- if (root == NULL)
|
|
|
- return 1;
|
|
|
- else {
|
|
|
- struct RB_NODE *ln = root->link[0];
|
|
|
- struct RB_NODE *rn = root->link[1];
|
|
|
- int lcmp = 0, rcmp = 0;
|
|
|
-
|
|
|
- /* Consecutive red links */
|
|
|
- if (is_red(root)) {
|
|
|
- if (is_red(ln) || is_red(rn)) {
|
|
|
- G_warning("Red Black Tree debugging: Red violation");
|
|
|
- return 0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- lh = rbtree_debug(tree, ln);
|
|
|
- rh = rbtree_debug(tree, rn);
|
|
|
-
|
|
|
- if (ln) {
|
|
|
- lcmp = tree->rb_compare(ln->data, root->data);
|
|
|
- }
|
|
|
-
|
|
|
- if (rn) {
|
|
|
- rcmp = tree->rb_compare(rn->data, root->data);
|
|
|
- }
|
|
|
-
|
|
|
- /* Invalid binary search tree:
|
|
|
- * left node >= parent or right node <= parent */
|
|
|
- if ((ln != NULL && lcmp > -1)
|
|
|
- || (rn != NULL && rcmp < 1)) {
|
|
|
- G_warning("Red Black Tree debugging: Binary tree violation" );
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- /* Black height mismatch */
|
|
|
- if (lh != 0 && rh != 0 && lh != rh) {
|
|
|
- G_warning("Red Black Tree debugging: Black violation");
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- /* Only count black links */
|
|
|
- if (lh != 0 && rh != 0)
|
|
|
- return is_red(root) ? lh : lh + 1;
|
|
|
- else
|
|
|
- return 0;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/*******************************************************
|
|
|
- * *
|
|
|
- * internal functions for Red Black Tree maintenance *
|
|
|
- * *
|
|
|
- *******************************************************/
|
|
|
-
|
|
|
-/* add a new node to the tree */
|
|
|
-struct RB_NODE *rbtree_make_node(size_t datasize, void *data)
|
|
|
-{
|
|
|
- struct RB_NODE *new_node = G_malloc(sizeof(*new_node));
|
|
|
-
|
|
|
- if (new_node == NULL)
|
|
|
- G_fatal_error("RB Search Tree: Out of memory!");
|
|
|
-
|
|
|
- new_node->data = G_malloc(datasize);
|
|
|
- if (new_node->data == NULL)
|
|
|
- G_fatal_error("RB Search Tree: Out of memory!");
|
|
|
-
|
|
|
- memcpy(new_node->data, data, datasize);
|
|
|
- new_node->red = 1; /* 1 is red, 0 is black */
|
|
|
- new_node->link[0] = NULL;
|
|
|
- new_node->link[1] = NULL;
|
|
|
-
|
|
|
- return new_node;
|
|
|
-}
|
|
|
-
|
|
|
-/* check for red violation */
|
|
|
-int is_red(struct RB_NODE *root)
|
|
|
-{
|
|
|
- if (root)
|
|
|
- return root->red == 1;
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/* single rotation */
|
|
|
-struct RB_NODE *rbtree_single(struct RB_NODE *root, int dir)
|
|
|
-{
|
|
|
- struct RB_NODE *newroot = root->link[!dir];
|
|
|
-
|
|
|
- root->link[!dir] = newroot->link[dir];
|
|
|
- newroot->link[dir] = root;
|
|
|
-
|
|
|
- root->red = 1;
|
|
|
- newroot->red = 0;
|
|
|
-
|
|
|
- return newroot;
|
|
|
-}
|
|
|
-
|
|
|
-/* double rotation */
|
|
|
-struct RB_NODE *rbtree_double(struct RB_NODE *root, int dir)
|
|
|
-{
|
|
|
- root->link[!dir] = rbtree_single(root->link[!dir], !dir);
|
|
|
- return rbtree_single(root, dir);
|
|
|
-}
|