Browse Source

r.sun manual: update to NC dataset; TODO file updated

git-svn-id: https://svn.osgeo.org/grass/grass/trunk@58554 15284696-431f-4ddb-bdfa-cd5b030d7da7
Markus Neteler 11 years ago
parent
commit
7fe7cd81e6
2 changed files with 34 additions and 14 deletions
  1. 22 2
      raster/r.sun/TODO
  2. 12 12
      raster/r.sun/r.sun.html

+ 22 - 2
raster/r.sun/TODO

@@ -1,7 +1,5 @@
 TODO
 
-11/2008: Integrate latest GRASS 7 API changes
-
 -------
 Probably the sun position calculation shouldbe replaced
 with 
@@ -12,3 +10,25 @@ currently used in r.sunmask. G_calc_solar_position() is based on
 solpos.c from NREL and very precise.
 
 MN 4/2001
+
+#### 
+Update
+  http://grasswiki.osgeo.org/wiki/R.sun
+
+####
+Fix http://trac.osgeo.org/grass/ticket/498
+
+pseudo-data test-case
+http://trac.osgeo.org/grass/ticket/498#comment:22
+#spearfish (further north than NC so more defined shadows)
+g.region -d
+r.mapcalc "undulates = (2 + sin( row() * 2 ) + cos( col() * 2 )) * 500"
+r.colors undulates color=bcyr
+nviz undulates
+
+DAY=355
+time r.sun elevin=undulates day=$DAY step=0.05 \
+  beam_rad=rad_test.und.355.beam \
+  diff_rad=rad_test.und.355.diff \
+  refl_rad=rad_test.und.355.refl
+

+ 12 - 12
raster/r.sun/r.sun.html

@@ -253,19 +253,19 @@ memory_bytes = rows*cols*((IR*4+horizon_steps)/num_partitions  + OR*4)
 
 <h2>EXAMPLES</h2>
 
-Spearfish example (considering also cast shadows):
+North Carolina example (considering also cast shadows):
 <div class="code"><pre>
-g.region rast=elevation.dem -p
+g.region rast=elevation -p
 
-# calculate horizons
-# (we put a bufferzone of 10% of maxdistance around the study area)
-r.horizon elev_in=elevation.dem horizon_step=30 bufferzone=200 horizon=horangle distance_step=0.7 maxdistance=2000
+# calculate horizon angles (to speed up the subsequent r.sun calculation)
+r.horizon elev_in=elevation horizon_step=30 bufferzone=200 horizon=horangle \
+    maxdistance=5000
 
 # slope + aspect
-r.slope.aspect elevation=elevation.dem aspect=aspect.dem slope=slope.dem
+r.slope.aspect elevation=elevation aspect=aspect.dem slope=slope.dem
 
-# calculate global radiation for day 180 at 14:00hrs
-r.sun elevation.dem horizon=horangle horizon_step=30 asp_in=aspect.dem \
+# calculate global radiation for day 180 at 14:00hrs, using r.horizon output
+r.sun elev_in=elevation horizon=horangle horizon_step=30 asp_in=aspect.dem \
       slope_in=slope.dem glob_rad=global_rad day=180 time=14
 </pre></div>
 
@@ -279,11 +279,11 @@ in non-leap years):
 g.region rast=elev_ned_30m -p
 
 # considering cast shadows
-r.sun elev_ned_30m lin=2.5 alb=0.2 day=172 \
+r.sun elev_in=elev_ned_30m lin=2.5 alb=0.2 day=172 \
       beam_rad=b172 diff_rad=d172 \
       refl_rad=r172 insol_time=it172
 
-d.mon x0
+d.mon wx0
 # show irradiation raster map [Wh.m-2.day-1]
 d.rast.leg b172
 # show insolation time raster map [h]
@@ -340,7 +340,7 @@ Academic Publishers. (Appendix explains formula;
 <a href="http://www.grassbook.org/">r.sun script download</a>)
 <li>
 Page, J. ed. (1986). Prediction of solar radiation on inclined surfaces. Solar
-energy R&amp;D in the European Community, series F &#8211; Solar radiation data,
+energy R&amp;D in the European Community, series F - Solar radiation data,
 Dordrecht (D. Reidel), 3, 71, 81-83. 
 <li>
 Page, J., Albuisson, M., Wald, L. (2001). The European solar radiation atlas:
@@ -351,7 +351,7 @@ ESRA - European Solar radiation Atlas - with respect to the Heliosat method.
 Solar energy, 68, 33-48. 
 <li>
 Scharmer, K., Greif, J., eds., (2000). The European solar radiation atlas,
-Vol. 2: Database and exploitation software. Paris (Les Presses de l&#8217; &Eacute;cole
+Vol. 2: Database and exploitation software. Paris (Les Presses de l'&Eacute;cole
 des Mines).
 <li>
 Joint Research Centre: <a href="http://re.jrc.ec.europa.eu/pvgis/">GIS solar radiation database for Europe</a> and