|
@@ -0,0 +1,571 @@
|
|
|
|
+
|
|
|
|
+/****************************************************************************
|
|
|
|
+ *
|
|
|
|
+ * MODULE: r.regression.multi
|
|
|
|
+ *
|
|
|
|
+ * AUTHOR(S): Markus Metz
|
|
|
|
+ *
|
|
|
|
+ * PURPOSE: Calculates multiple linear regression from raster maps:
|
|
|
|
+ * y = b0 + b1*x1 + b2*x2 + ... + bn*xn + e
|
|
|
|
+ *
|
|
|
|
+ * COPYRIGHT: (C) 2011 by the GRASS Development Team
|
|
|
|
+ *
|
|
|
|
+ * This program is free software under the GNU General Public
|
|
|
|
+ * License (>=v2). Read the file COPYING that comes with GRASS
|
|
|
|
+ * for details.
|
|
|
|
+ *
|
|
|
|
+ *****************************************************************************/
|
|
|
|
+
|
|
|
|
+#include <stdio.h>
|
|
|
|
+#include <stdlib.h>
|
|
|
|
+#include <math.h>
|
|
|
|
+#include <string.h>
|
|
|
|
+#include <grass/gis.h>
|
|
|
|
+#include <grass/glocale.h>
|
|
|
|
+#include <grass/raster.h>
|
|
|
|
+
|
|
|
|
+struct MATRIX
|
|
|
|
+{
|
|
|
|
+ int n; /* SIZE OF THIS MATRIX (N x N) */
|
|
|
|
+ double *v;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+#define M(m,row,col) (m)->v[((row) * ((m)->n)) + (col)]
|
|
|
|
+
|
|
|
|
+static int solvemat(struct MATRIX *m, double a[], double B[])
|
|
|
|
+{
|
|
|
|
+ int i, j, i2, j2, imark;
|
|
|
|
+ double factor, temp;
|
|
|
|
+ double pivot; /* ACTUAL VALUE OF THE LARGEST PIVOT CANDIDATE */
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < m->n; i++) {
|
|
|
|
+ j = i;
|
|
|
|
+
|
|
|
|
+ /* find row with largest magnitude value for pivot value */
|
|
|
|
+
|
|
|
|
+ pivot = M(m, i, j);
|
|
|
|
+ imark = i;
|
|
|
|
+ for (i2 = i + 1; i2 < m->n; i2++) {
|
|
|
|
+ temp = fabs(M(m, i2, j));
|
|
|
|
+ if (temp > fabs(pivot)) {
|
|
|
|
+ pivot = M(m, i2, j);
|
|
|
|
+ imark = i2;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* if the pivot is very small then the points are nearly co-linear */
|
|
|
|
+ /* co-linear points result in an undefined matrix, and nearly */
|
|
|
|
+ /* co-linear points results in a solution with rounding error */
|
|
|
|
+
|
|
|
|
+ if (pivot == 0.0) {
|
|
|
|
+ G_warning(_("Matrix is unsolvable"));
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* if row with highest pivot is not the current row, switch them */
|
|
|
|
+
|
|
|
|
+ if (imark != i) {
|
|
|
|
+ for (j2 = 0; j2 < m->n; j2++) {
|
|
|
|
+ temp = M(m, imark, j2);
|
|
|
|
+ M(m, imark, j2) = M(m, i, j2);
|
|
|
|
+ M(m, i, j2) = temp;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ temp = a[imark];
|
|
|
|
+ a[imark] = a[i];
|
|
|
|
+ a[i] = temp;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* compute zeros above and below the pivot, and compute
|
|
|
|
+ values for the rest of the row as well */
|
|
|
|
+
|
|
|
|
+ for (i2 = 0; i2 < m->n; i2++) {
|
|
|
|
+ if (i2 != i) {
|
|
|
|
+ factor = M(m, i2, j) / pivot;
|
|
|
|
+ for (j2 = j; j2 < m->n; j2++)
|
|
|
|
+ M(m, i2, j2) -= factor * M(m, i, j2);
|
|
|
|
+ a[i2] -= factor * a[i];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* SINCE ALL OTHER VALUES IN THE MATRIX ARE ZERO NOW, CALCULATE THE
|
|
|
|
+ COEFFICIENTS BY DIVIDING THE COLUMN VECTORS BY THE DIAGONAL VALUES. */
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < m->n; i++) {
|
|
|
|
+ B[i] = a[i] / M(m, i, i);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return 1;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int main(int argc, char *argv[])
|
|
|
|
+{
|
|
|
|
+ unsigned int r, c, rows, cols, n_valid; /* totals */
|
|
|
|
+ int *mapx_fd, mapy_fd, mapres_fd, mapest_fd;
|
|
|
|
+ int i, j, k, n_predictors;
|
|
|
|
+ double *sumX, sumY, *sumsqX, sumsqY, *sumXY;
|
|
|
|
+ double *meanX, meanY, *varX, varY, *sdX, sdY;
|
|
|
|
+ double yest, yres; /* estimated y, residual */
|
|
|
|
+ double sumYest, *SSerr_without;
|
|
|
|
+ double SE;
|
|
|
|
+ double meanYest, meanYres, varYest, varYres, sdYest, sdYres;
|
|
|
|
+ double SStot, SSerr, SSreg;
|
|
|
|
+ double **a;
|
|
|
|
+ struct MATRIX *m, *m_all;
|
|
|
|
+ double **B, Rsq, Rsqadj, F, t, AIC, AICc, BIC;
|
|
|
|
+ unsigned int count = 0;
|
|
|
|
+ DCELL **mapx_buf, *mapy_buf, *mapx_val, mapy_val, *mapres_buf, *mapest_buf;
|
|
|
|
+ char *name;
|
|
|
|
+ struct Option *input_mapx, *input_mapy, *output_res, *output_est, *output_opt;
|
|
|
|
+ struct Flag *shell_style;
|
|
|
|
+ struct Cell_head region;
|
|
|
|
+ struct GModule *module;
|
|
|
|
+
|
|
|
|
+ G_gisinit(argv[0]);
|
|
|
|
+
|
|
|
|
+ module = G_define_module();
|
|
|
|
+ G_add_keyword(_("raster"));
|
|
|
|
+ G_add_keyword(_("statistics"));
|
|
|
|
+ module->description =
|
|
|
|
+ _("Calculates multiple linear regression from raster maps.");
|
|
|
|
+
|
|
|
|
+ /* Define the different options */
|
|
|
|
+ input_mapx = G_define_standard_option(G_OPT_R_INPUTS);
|
|
|
|
+ input_mapx->key = "mapx";
|
|
|
|
+ input_mapx->description = (_("Map for x coefficient"));
|
|
|
|
+
|
|
|
|
+ input_mapy = G_define_standard_option(G_OPT_R_INPUT);
|
|
|
|
+ input_mapy->key = "mapy";
|
|
|
|
+ input_mapy->description = (_("Map for y coefficient"));
|
|
|
|
+
|
|
|
|
+ output_res = G_define_standard_option(G_OPT_R_OUTPUT);
|
|
|
|
+ output_res->key = "residuals";
|
|
|
|
+ output_res->required = NO;
|
|
|
|
+ output_res->description = (_("Map to store residuals"));
|
|
|
|
+
|
|
|
|
+ output_est = G_define_standard_option(G_OPT_R_OUTPUT);
|
|
|
|
+ output_est->key = "estimates";
|
|
|
|
+ output_est->required = NO;
|
|
|
|
+ output_est->description = (_("Map to store estimates"));
|
|
|
|
+
|
|
|
|
+ output_opt = G_define_standard_option(G_OPT_F_OUTPUT);
|
|
|
|
+ output_opt->key = "output";
|
|
|
|
+ output_opt->required = NO;
|
|
|
|
+ output_opt->description =
|
|
|
|
+ (_("ASCII file for storing regression coefficients (output to screen if file not specified)."));
|
|
|
|
+
|
|
|
|
+ shell_style = G_define_flag();
|
|
|
|
+ shell_style->key = 'g';
|
|
|
|
+ shell_style->description = _("Print in shell script style");
|
|
|
|
+
|
|
|
|
+ if (G_parser(argc, argv))
|
|
|
|
+ exit(EXIT_FAILURE);
|
|
|
|
+
|
|
|
|
+ name = output_opt->answer;
|
|
|
|
+ if (name != NULL && strcmp(name, "-") != 0) {
|
|
|
|
+ if (NULL == freopen(name, "w", stdout)) {
|
|
|
|
+ G_fatal_error(_("Unable to open file <%s> for writing"), name);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ G_get_window(®ion);
|
|
|
|
+ rows = region.rows;
|
|
|
|
+ cols = region.cols;
|
|
|
|
+
|
|
|
|
+ /* count x maps */
|
|
|
|
+ for (i = 0; input_mapx->answers[i]; i++);
|
|
|
|
+ n_predictors = i;
|
|
|
|
+
|
|
|
|
+ /* allocate memory for x maps */
|
|
|
|
+ mapx_fd = (int *)G_malloc(n_predictors * sizeof(int));
|
|
|
|
+ sumX = (double *)G_malloc(n_predictors * sizeof(double));
|
|
|
|
+ sumsqX = (double *)G_malloc(n_predictors * sizeof(double));
|
|
|
|
+ sumXY = (double *)G_malloc(n_predictors * sizeof(double));
|
|
|
|
+ SSerr_without = (double *)G_malloc(n_predictors * sizeof(double));
|
|
|
|
+ meanX = (double *)G_malloc(n_predictors * sizeof(double));
|
|
|
|
+ varX = (double *)G_malloc(n_predictors * sizeof(double));
|
|
|
|
+ sdX = (double *)G_malloc(n_predictors * sizeof(double));
|
|
|
|
+ mapx_buf = (DCELL **)G_malloc(n_predictors * sizeof(DCELL *));
|
|
|
|
+ mapx_val = (DCELL *)G_malloc((n_predictors + 1) * sizeof(DCELL));
|
|
|
|
+
|
|
|
|
+ /* ordinary least squares */
|
|
|
|
+ m = NULL;
|
|
|
|
+ m_all = (struct MATRIX *)G_malloc((n_predictors + 1) * sizeof(struct MATRIX));
|
|
|
|
+ a = (double **)G_malloc((n_predictors + 1) * sizeof(double *));
|
|
|
|
+ B = (double **)G_malloc((n_predictors + 1) * sizeof(double *));
|
|
|
|
+
|
|
|
|
+ m = &(m_all[0]);
|
|
|
|
+ m->n = n_predictors + 1;
|
|
|
|
+ m->v = (double *)G_malloc(m->n * m->n * sizeof(double));
|
|
|
|
+
|
|
|
|
+ a[0] = (double *)G_malloc(m->n * sizeof(double));
|
|
|
|
+ B[0] = (double *)G_malloc(m->n * sizeof(double));
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < m->n; i++) {
|
|
|
|
+ for (j = i; j < m->n; j++)
|
|
|
|
+ M(m, i, j) = 0.0;
|
|
|
|
+ a[0][i] = 0.0;
|
|
|
|
+ B[0][i] = 0.0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for (k = 1; k <= n_predictors; k++) {
|
|
|
|
+ m = &(m_all[k]);
|
|
|
|
+ m->n = n_predictors;
|
|
|
|
+ m->v = (double *)G_malloc(m->n * m->n * sizeof(double));
|
|
|
|
+ a[k] = (double *)G_malloc(m->n * sizeof(double));
|
|
|
|
+ B[k] = (double *)G_malloc(m->n * sizeof(double));
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < m->n; i++) {
|
|
|
|
+ for (j = i; j < m->n; j++)
|
|
|
|
+ M(m, i, j) = 0.0;
|
|
|
|
+ a[k][i] = 0.0;
|
|
|
|
+ B[k][i] = 0.0;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* open maps */
|
|
|
|
+ G_debug(1, "open maps");
|
|
|
|
+ for (i = 0; i < n_predictors; i++) {
|
|
|
|
+ mapx_fd[i] = Rast_open_old(input_mapx->answers[i], "");
|
|
|
|
+ }
|
|
|
|
+ mapy_fd = Rast_open_old(input_mapy->answer, "");
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < n_predictors; i++)
|
|
|
|
+ mapx_buf[i] = Rast_allocate_d_buf();
|
|
|
|
+ mapy_buf = Rast_allocate_d_buf();
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < n_predictors; i++) {
|
|
|
|
+ sumX[i] = sumsqX[i] = sumXY[i] = 0.0;
|
|
|
|
+ meanX[i] = varX[i] = sdX[i] = 0.0;
|
|
|
|
+ SSerr_without[i] = 0.0;
|
|
|
|
+ }
|
|
|
|
+ sumY = sumsqY = meanY = varY = sdY = 0.0;
|
|
|
|
+ sumYest = meanYest = varYest = sdYest = 0.0;
|
|
|
|
+ meanYres = varYres = sdYres = 0.0;
|
|
|
|
+
|
|
|
|
+ /* read input maps */
|
|
|
|
+ G_message(_("First pass..."));
|
|
|
|
+ n_valid = 0;
|
|
|
|
+ mapx_val[0] = 1.0;
|
|
|
|
+ for (r = 0; r < rows; r++) {
|
|
|
|
+ G_percent(r, rows, 2);
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < n_predictors; i++)
|
|
|
|
+ Rast_get_d_row(mapx_fd[i], mapx_buf[i], r);
|
|
|
|
+
|
|
|
|
+ Rast_get_d_row(mapy_fd, mapy_buf, r);
|
|
|
|
+
|
|
|
|
+ for (c = 0; c < cols; c++) {
|
|
|
|
+ int isnull = 0;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < n_predictors; i++) {
|
|
|
|
+ mapx_val[i + 1] = mapx_buf[i][c];
|
|
|
|
+ if (Rast_is_d_null_value(&(mapx_val[i + 1]))) {
|
|
|
|
+ isnull = 1;
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ if (isnull)
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ mapy_val = mapy_buf[c];
|
|
|
|
+ if (Rast_is_d_null_value(&mapy_val))
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i <= n_predictors; i++) {
|
|
|
|
+ double val1 = mapx_val[i];
|
|
|
|
+
|
|
|
|
+ for (j = i; j <= n_predictors; j++) {
|
|
|
|
+ double val2 = mapx_val[j];
|
|
|
|
+
|
|
|
|
+ m = &(m_all[0]);
|
|
|
|
+ M(m, i, j) += val1 * val2;
|
|
|
|
+
|
|
|
|
+ /* linear model without predictor k */
|
|
|
|
+ for (k = 1; k <= n_predictors; k++) {
|
|
|
|
+ if (k != i && k != j) {
|
|
|
|
+ int i2 = k > i ? i : i - 1;
|
|
|
|
+ int j2 = k > j ? j : j - 1;
|
|
|
|
+
|
|
|
|
+ m = &(m_all[k]);
|
|
|
|
+ M(m, i2, j2) += val1 * val2;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ a[0][i] += mapy_val * val1;
|
|
|
|
+ for (k = 1; k <= n_predictors; k++) {
|
|
|
|
+ if (k != i) {
|
|
|
|
+ int i2 = k > i ? i : i - 1;
|
|
|
|
+
|
|
|
|
+ a[k][i2] += mapy_val * val1;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (i > 0) {
|
|
|
|
+ sumX[i - 1] += val1;
|
|
|
|
+ sumsqX[i - 1] += val1 * val1;
|
|
|
|
+ sumXY[i - 1] += val1 * mapy_val;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ sumY += mapy_val;
|
|
|
|
+ sumsqY += mapy_val * mapy_val;
|
|
|
|
+ count++;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ G_percent(rows, rows, 2);
|
|
|
|
+
|
|
|
|
+ if (count < n_predictors + 1)
|
|
|
|
+ G_fatal_error(_("Not enough valid cells available"));
|
|
|
|
+
|
|
|
|
+ for (k = 0; k <= n_predictors; k++) {
|
|
|
|
+ m = &(m_all[k]);
|
|
|
|
+
|
|
|
|
+ /* TRANSPOSE VALUES IN UPPER HALF OF M TO OTHER HALF */
|
|
|
|
+ for (i = 1; i < m->n; i++)
|
|
|
|
+ for (j = 0; j < i; j++)
|
|
|
|
+ M(m, i, j) = M(m, j, i);
|
|
|
|
+
|
|
|
|
+ if (!solvemat(m, a[k], B[k])) {
|
|
|
|
+ for (i = 0; i <= n_predictors; i++) {
|
|
|
|
+ fprintf(stdout, "b%d=0.0\n", i);
|
|
|
|
+ }
|
|
|
|
+ G_fatal_error(_("Multiple regression failed"));
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* second pass */
|
|
|
|
+ G_message(_("Second pass..."));
|
|
|
|
+
|
|
|
|
+ /* residuals output */
|
|
|
|
+ if (output_res->answer) {
|
|
|
|
+ mapres_fd = Rast_open_new(output_res->answer, DCELL_TYPE);
|
|
|
|
+ mapres_buf = Rast_allocate_d_buf();
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ mapres_fd = -1;
|
|
|
|
+ mapres_buf = NULL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* estimates output */
|
|
|
|
+ if (output_est->answer) {
|
|
|
|
+ mapest_fd = Rast_open_new(output_est->answer, DCELL_TYPE);
|
|
|
|
+ mapest_buf = Rast_allocate_d_buf();
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ mapest_fd = -1;
|
|
|
|
+ mapest_buf = NULL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < n_predictors; i++)
|
|
|
|
+ meanX[i] = sumX[i] / count;
|
|
|
|
+
|
|
|
|
+ meanY = sumY / count;
|
|
|
|
+ SStot = SSerr = SSreg = 0.0;
|
|
|
|
+ for (r = 0; r < rows; r++) {
|
|
|
|
+ G_percent(r, rows, 2);
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < n_predictors; i++)
|
|
|
|
+ Rast_get_d_row(mapx_fd[i], mapx_buf[i], r);
|
|
|
|
+
|
|
|
|
+ Rast_get_d_row(mapy_fd, mapy_buf, r);
|
|
|
|
+
|
|
|
|
+ if (mapres_buf)
|
|
|
|
+ Rast_set_d_null_value(mapres_buf, cols);
|
|
|
|
+ if (mapest_buf)
|
|
|
|
+ Rast_set_d_null_value(mapest_buf, cols);
|
|
|
|
+
|
|
|
|
+ for (c = 0; c < cols; c++) {
|
|
|
|
+ int isnull = 0;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < n_predictors; i++) {
|
|
|
|
+ mapx_val[i + 1] = mapx_buf[i][c];
|
|
|
|
+ if (Rast_is_d_null_value(&(mapx_val[i + 1]))) {
|
|
|
|
+ isnull = 1;
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ if (isnull)
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ yest = 0.0;
|
|
|
|
+ for (i = 0; i <= n_predictors; i++) {
|
|
|
|
+ yest += B[0][i] * mapx_val[i];
|
|
|
|
+ }
|
|
|
|
+ if (mapest_buf)
|
|
|
|
+ mapest_buf[c] = yest;
|
|
|
|
+
|
|
|
|
+ mapy_val = mapy_buf[c];
|
|
|
|
+ if (Rast_is_d_null_value(&mapy_val))
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ yres = mapy_val - yest;
|
|
|
|
+ if (mapres_buf)
|
|
|
|
+ mapres_buf[c] = yres;
|
|
|
|
+
|
|
|
|
+ SStot += (mapy_val - meanY) * (mapy_val - meanY);
|
|
|
|
+ SSreg += (yest - meanY) * (yest - meanY);
|
|
|
|
+ SSerr += yres * yres;
|
|
|
|
+
|
|
|
|
+ for (k = 1; k <= n_predictors; k++) {
|
|
|
|
+ double yesti = 0.0;
|
|
|
|
+ double yresi;
|
|
|
|
+
|
|
|
|
+ /* linear model without predictor k */
|
|
|
|
+ for (i = 0; i <= n_predictors; i++) {
|
|
|
|
+ if (i != k) {
|
|
|
|
+ j = k > i ? i : i - 1;
|
|
|
|
+ yesti += B[k][j] * mapx_val[i];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ yresi = mapy_val - yesti;
|
|
|
|
+
|
|
|
|
+ /* linear model without predictor k */
|
|
|
|
+ SSerr_without[k - 1] += yresi * yresi;
|
|
|
|
+
|
|
|
|
+ varX[k - 1] = (mapx_val[k] - meanX[k - 1]) * (mapx_val[k] - meanX[k - 1]);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (mapres_buf)
|
|
|
|
+ Rast_put_d_row(mapres_fd, mapres_buf);
|
|
|
|
+ if (mapest_buf)
|
|
|
|
+ Rast_put_d_row(mapest_fd, mapest_buf);
|
|
|
|
+ }
|
|
|
|
+ G_percent(rows, rows, 2);
|
|
|
|
+
|
|
|
|
+ fprintf(stdout, "n=%d\n", count);
|
|
|
|
+ /* coefficient of determination aka R squared */
|
|
|
|
+ Rsq = 1 - (SSerr / SStot);
|
|
|
|
+ fprintf(stdout, "Rsq=%f\n", Rsq);
|
|
|
|
+ /* adjusted coefficient of determination */
|
|
|
|
+ Rsqadj = 1 - ((SSerr * (count - 1)) / (SStot * (count - n_predictors - 1)));
|
|
|
|
+ fprintf(stdout, "Rsqadj=%f\n", Rsqadj);
|
|
|
|
+ /* F statistic */
|
|
|
|
+ /* F = ((SStot - SSerr) / (n_predictors)) / (SSerr / (count - n_predictors));
|
|
|
|
+ * , or: */
|
|
|
|
+ F = ((SStot - SSerr) * (count - n_predictors - 1)) / (SSerr * (n_predictors));
|
|
|
|
+ fprintf(stdout, "F=%f\n", F);
|
|
|
|
+
|
|
|
|
+ i = 0;
|
|
|
|
+ /* constant aka estimate for intercept in R */
|
|
|
|
+ fprintf(stdout, "b%d=%f\n", i, B[0][i]);
|
|
|
|
+ /* t score for R squared of the full model, unused */
|
|
|
|
+ t = sqrt(Rsq) * sqrt((count - 2) / (1 - Rsq));
|
|
|
|
+ /*
|
|
|
|
+ fprintf(stdout, "t%d=%f\n", i, t);
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+ /* AIC, corrected AIC, and BIC information criteria for the full model */
|
|
|
|
+ AIC = count * log(SSerr / count) + 2 * (n_predictors + 1);
|
|
|
|
+ fprintf(stdout, "AIC=%f\n", AIC);
|
|
|
|
+ AICc = AIC + (2 * n_predictors * (n_predictors + 1)) / (count - n_predictors - 1);
|
|
|
|
+ fprintf(stdout, "AICc=%f\n", AICc);
|
|
|
|
+ BIC = count * log(SSerr / count) + log(count) * (n_predictors + 1);
|
|
|
|
+ fprintf(stdout, "BIC=%f\n", BIC);
|
|
|
|
+
|
|
|
|
+ /* error variance of the model, identical to R */
|
|
|
|
+ SE = SSerr / (count - n_predictors - 1);
|
|
|
|
+ /*
|
|
|
|
+ fprintf(stdout, "SE=%f\n", SE);
|
|
|
|
+ fprintf(stdout, "SSerr=%f\n", SSerr);
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < n_predictors; i++) {
|
|
|
|
+
|
|
|
|
+ fprintf(stdout, "\nb%d=%f\n", i + 1, B[0][i + 1]);
|
|
|
|
+ if (n_predictors > 1) {
|
|
|
|
+ double Rsqi, SEi, sumsqX_corr;
|
|
|
|
+
|
|
|
|
+ /* corrected sum of squares for predictor [i] */
|
|
|
|
+ sumsqX_corr = sumsqX[i] - sumX[i] * sumX[i] / (count - n_predictors - 1);
|
|
|
|
+
|
|
|
|
+ /* standard error SE for predictor [i] */
|
|
|
|
+
|
|
|
|
+ /* SE[i] with only one predictor: sqrt(SE / sumsqX_corr)
|
|
|
|
+ * this does not work with more than one predictor */
|
|
|
|
+ /* in R, SEi is sqrt(diag(R) * resvar) with
|
|
|
|
+ * R = ???
|
|
|
|
+ * resvar = rss / rdf = SE global
|
|
|
|
+ * rss = sum of squares of the residuals
|
|
|
|
+ * rdf = residual degrees of freedom = count - n_predictors - 1 */
|
|
|
|
+ SEi = sqrt(SE / (Rsq * sumsqX_corr));
|
|
|
|
+ /*
|
|
|
|
+ fprintf(stdout, "SE%d=%f\n", i + 1, SEi);
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+ /* Sum of squares for predictor [i] */
|
|
|
|
+ /*
|
|
|
|
+ fprintf(stdout, "SSerr%d=%f\n", i + 1, SSerr_without[i] - SSerr);
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+ /* R squared of the model without predictor [i] */
|
|
|
|
+ /* Rsqi = 1 - SSerr_without[i] / SStot; */
|
|
|
|
+ /* the additional amount of variance explained
|
|
|
|
+ * when including predictor [i] :
|
|
|
|
+ * Rsq - Rsqi */
|
|
|
|
+ Rsqi = (SSerr_without[i] - SSerr) / SStot;
|
|
|
|
+ fprintf(stdout, "Rsq%d=%f\n", i + 1, Rsqi);
|
|
|
|
+
|
|
|
|
+ /* t score for Student's t distribution, unused */
|
|
|
|
+ t = (B[0][i + 1]) / SEi;
|
|
|
|
+ /*
|
|
|
|
+ fprintf(stdout, "t%d=%f\n", i + 1, t);
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+ /* F score for Fisher's F distribution
|
|
|
|
+ * here: F score to test if including predictor [i]
|
|
|
|
+ * yields a significant improvement
|
|
|
|
+ * after Lothar Sachs, Angewandte Statistik:
|
|
|
|
+ * F = (Rsq - Rsqi) * (count - n_predictors - 1) / (1 - Rsq) */
|
|
|
|
+ /* same like Sumsq / SE */
|
|
|
|
+ /* same like (SSerr_without[i] / SSerr - 1) * (count - n_predictors - 1) */
|
|
|
|
+ /* same like R-stats when entered in R-stats as last predictor */
|
|
|
|
+ F = (SSerr_without[i] / SSerr - 1) * (count - n_predictors - 1);
|
|
|
|
+ fprintf(stdout, "F%d=%f\n", i + 1, F);
|
|
|
|
+
|
|
|
|
+ /* AIC, corrected AIC, and BIC information criteria for
|
|
|
|
+ * the model without predictor [i] */
|
|
|
|
+ AIC = count * log(SSerr_without[i] / count) + 2 * (n_predictors);
|
|
|
|
+ fprintf(stdout, "AIC%d=%f\n", i + 1, AIC);
|
|
|
|
+ AICc = AIC + (2 * (n_predictors - 1) * n_predictors) / (count - n_predictors - 2);
|
|
|
|
+ fprintf(stdout, "AICc%d=%f\n", i + 1, AICc);
|
|
|
|
+ BIC = count * log(SSerr_without[i] / count) + (n_predictors - 1) * log(count);
|
|
|
|
+ fprintf(stdout, "BIC%d=%f\n", i + 1, BIC);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < n_predictors; i++) {
|
|
|
|
+ Rast_close(mapx_fd[i]);
|
|
|
|
+ G_free(mapx_buf[i]);
|
|
|
|
+ }
|
|
|
|
+ Rast_close(mapy_fd);
|
|
|
|
+ G_free(mapy_buf);
|
|
|
|
+
|
|
|
|
+ if (mapres_fd > -1) {
|
|
|
|
+ struct History history;
|
|
|
|
+
|
|
|
|
+ Rast_close(mapres_fd);
|
|
|
|
+ G_free(mapres_buf);
|
|
|
|
+
|
|
|
|
+ Rast_short_history(output_res->answer, "raster", &history);
|
|
|
|
+ Rast_command_history(&history);
|
|
|
|
+ Rast_write_history(output_res->answer, &history);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (mapest_fd > -1) {
|
|
|
|
+ struct History history;
|
|
|
|
+
|
|
|
|
+ Rast_close(mapest_fd);
|
|
|
|
+ G_free(mapest_buf);
|
|
|
|
+
|
|
|
|
+ Rast_short_history(output_est->answer, "raster", &history);
|
|
|
|
+ Rast_command_history(&history);
|
|
|
|
+ Rast_write_history(output_est->answer, &history);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ exit(EXIT_SUCCESS);
|
|
|
|
+}
|