Przeglądaj źródła

move r.regression.multi to trunk

git-svn-id: https://svn.osgeo.org/grass/grass/trunk@56168 15284696-431f-4ddb-bdfa-cd5b030d7da7
Markus Metz 12 lat temu
rodzic
commit
91f94f5e8b

+ 10 - 0
raster/r.regression.multi/Makefile

@@ -0,0 +1,10 @@
+MODULE_TOPDIR = ../..
+
+PGM = r.regression.multi
+
+LIBES = $(RASTERLIB) $(GISLIB) $(MATHLIB)
+DEPENDENCIES = $(RASTERDEP) $(GISDEP)
+
+include $(MODULE_TOPDIR)/include/Make/Module.make
+
+default: cmd

+ 571 - 0
raster/r.regression.multi/main.c

@@ -0,0 +1,571 @@
+
+/****************************************************************************
+ *
+ * MODULE:       r.regression.multi
+ * 
+ * AUTHOR(S):    Markus Metz
+ * 
+ * PURPOSE:      Calculates multiple linear regression from raster maps:
+ *               y = b0 + b1*x1 + b2*x2 + ... +  bn*xn + e
+ * 
+ * COPYRIGHT:    (C) 2011 by the GRASS Development Team
+ *
+ *               This program is free software under the GNU General Public
+ *               License (>=v2). Read the file COPYING that comes with GRASS
+ *               for details.
+ *
+ *****************************************************************************/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+#include <string.h>
+#include <grass/gis.h>
+#include <grass/glocale.h>
+#include <grass/raster.h>
+
+struct MATRIX
+{
+    int n;			/* SIZE OF THIS MATRIX (N x N) */
+    double *v;
+};
+
+#define M(m,row,col) (m)->v[((row) * ((m)->n)) + (col)]
+
+static int solvemat(struct MATRIX *m, double a[], double B[])
+{
+    int i, j, i2, j2, imark;
+    double factor, temp;
+    double pivot;		/* ACTUAL VALUE OF THE LARGEST PIVOT CANDIDATE */
+
+    for (i = 0; i < m->n; i++) {
+	j = i;
+
+	/* find row with largest magnitude value for pivot value */
+
+	pivot = M(m, i, j);
+	imark = i;
+	for (i2 = i + 1; i2 < m->n; i2++) {
+	    temp = fabs(M(m, i2, j));
+	    if (temp > fabs(pivot)) {
+		pivot = M(m, i2, j);
+		imark = i2;
+	    }
+	}
+
+	/* if the pivot is very small then the points are nearly co-linear */
+	/* co-linear points result in an undefined matrix, and nearly */
+	/* co-linear points results in a solution with rounding error */
+
+	if (pivot == 0.0) {
+	    G_warning(_("Matrix is unsolvable"));
+	    return 0;
+	}
+
+	/* if row with highest pivot is not the current row, switch them */
+
+	if (imark != i) {
+	    for (j2 = 0; j2 < m->n; j2++) {
+		temp = M(m, imark, j2);
+		M(m, imark, j2) = M(m, i, j2);
+		M(m, i, j2) = temp;
+	    }
+
+	    temp = a[imark];
+	    a[imark] = a[i];
+	    a[i] = temp;
+	}
+
+	/* compute zeros above and below the pivot, and compute
+	   values for the rest of the row as well */
+
+	for (i2 = 0; i2 < m->n; i2++) {
+	    if (i2 != i) {
+		factor = M(m, i2, j) / pivot;
+		for (j2 = j; j2 < m->n; j2++)
+		    M(m, i2, j2) -= factor * M(m, i, j2);
+		a[i2] -= factor * a[i];
+	    }
+	}
+    }
+
+    /* SINCE ALL OTHER VALUES IN THE MATRIX ARE ZERO NOW, CALCULATE THE
+       COEFFICIENTS BY DIVIDING THE COLUMN VECTORS BY THE DIAGONAL VALUES. */
+
+    for (i = 0; i < m->n; i++) {
+	B[i] = a[i] / M(m, i, i);
+    }
+
+    return 1;
+}
+
+int main(int argc, char *argv[])
+{
+    unsigned int r, c, rows, cols, n_valid;	/*  totals  */
+    int *mapx_fd, mapy_fd, mapres_fd, mapest_fd;
+    int i, j, k, n_predictors;
+    double *sumX, sumY, *sumsqX, sumsqY, *sumXY;
+    double *meanX, meanY, *varX, varY, *sdX, sdY;
+    double yest, yres;       /* estimated y, residual */
+    double sumYest, *SSerr_without;
+    double SE;
+    double meanYest, meanYres, varYest, varYres, sdYest, sdYres;
+    double SStot, SSerr, SSreg;
+    double **a;
+    struct MATRIX *m, *m_all;
+    double **B, Rsq, Rsqadj, F, t, AIC, AICc, BIC;
+    unsigned int count = 0;
+    DCELL **mapx_buf, *mapy_buf, *mapx_val, mapy_val, *mapres_buf, *mapest_buf;
+    char *name;
+    struct Option *input_mapx, *input_mapy, *output_res, *output_est, *output_opt;
+    struct Flag *shell_style;
+    struct Cell_head region;
+    struct GModule *module;
+
+    G_gisinit(argv[0]);
+
+    module = G_define_module();
+    G_add_keyword(_("raster"));
+    G_add_keyword(_("statistics"));
+    module->description =
+	_("Calculates multiple linear regression from raster maps.");
+
+    /* Define the different options */
+    input_mapx = G_define_standard_option(G_OPT_R_INPUTS);
+    input_mapx->key = "mapx";
+    input_mapx->description = (_("Map for x coefficient"));
+
+    input_mapy = G_define_standard_option(G_OPT_R_INPUT);
+    input_mapy->key = "mapy";
+    input_mapy->description = (_("Map for y coefficient"));
+
+    output_res = G_define_standard_option(G_OPT_R_OUTPUT);
+    output_res->key = "residuals";
+    output_res->required = NO;
+    output_res->description = (_("Map to store residuals"));
+
+    output_est = G_define_standard_option(G_OPT_R_OUTPUT);
+    output_est->key = "estimates";
+    output_est->required = NO;
+    output_est->description = (_("Map to store estimates"));
+
+    output_opt = G_define_standard_option(G_OPT_F_OUTPUT);
+    output_opt->key = "output";
+    output_opt->required = NO;
+    output_opt->description =
+	(_("ASCII file for storing regression coefficients (output to screen if file not specified)."));
+
+    shell_style = G_define_flag();
+    shell_style->key = 'g';
+    shell_style->description = _("Print in shell script style");
+
+    if (G_parser(argc, argv))
+	exit(EXIT_FAILURE);
+
+    name = output_opt->answer;
+    if (name != NULL && strcmp(name, "-") != 0) {
+	if (NULL == freopen(name, "w", stdout)) {
+	    G_fatal_error(_("Unable to open file <%s> for writing"), name);
+	}
+    }
+
+    G_get_window(&region);
+    rows = region.rows;
+    cols = region.cols;
+
+    /* count x maps */
+    for (i = 0; input_mapx->answers[i]; i++);
+    n_predictors = i;
+    
+    /* allocate memory for x maps */
+    mapx_fd = (int *)G_malloc(n_predictors * sizeof(int));
+    sumX = (double *)G_malloc(n_predictors * sizeof(double));
+    sumsqX = (double *)G_malloc(n_predictors * sizeof(double));
+    sumXY = (double *)G_malloc(n_predictors * sizeof(double));
+    SSerr_without = (double *)G_malloc(n_predictors * sizeof(double));
+    meanX = (double *)G_malloc(n_predictors * sizeof(double));
+    varX = (double *)G_malloc(n_predictors * sizeof(double));
+    sdX = (double *)G_malloc(n_predictors * sizeof(double));
+    mapx_buf = (DCELL **)G_malloc(n_predictors * sizeof(DCELL *));
+    mapx_val = (DCELL *)G_malloc((n_predictors + 1) * sizeof(DCELL));
+    
+    /* ordinary least squares */
+    m = NULL;
+    m_all = (struct MATRIX *)G_malloc((n_predictors + 1) * sizeof(struct MATRIX));
+    a = (double **)G_malloc((n_predictors + 1) * sizeof(double *));
+    B = (double **)G_malloc((n_predictors + 1) * sizeof(double *));
+
+    m = &(m_all[0]);
+    m->n = n_predictors + 1;
+    m->v = (double *)G_malloc(m->n * m->n * sizeof(double));
+
+    a[0] = (double *)G_malloc(m->n * sizeof(double));
+    B[0] = (double *)G_malloc(m->n * sizeof(double));
+
+    for (i = 0; i < m->n; i++) {
+	for (j = i; j < m->n; j++)
+	    M(m, i, j) = 0.0;
+	a[0][i] = 0.0;
+	B[0][i] = 0.0;
+    }
+    
+    for (k = 1; k <= n_predictors; k++) {
+	m = &(m_all[k]);
+	m->n = n_predictors;
+	m->v = (double *)G_malloc(m->n * m->n * sizeof(double));
+	a[k] = (double *)G_malloc(m->n * sizeof(double));
+	B[k] = (double *)G_malloc(m->n * sizeof(double));
+
+	for (i = 0; i < m->n; i++) {
+	    for (j = i; j < m->n; j++)
+		M(m, i, j) = 0.0;
+	    a[k][i] = 0.0;
+	    B[k][i] = 0.0;
+	}
+    }
+
+    /* open maps */
+    G_debug(1, "open maps");
+    for (i = 0; i < n_predictors; i++) {
+	mapx_fd[i] = Rast_open_old(input_mapx->answers[i], "");
+    }
+    mapy_fd = Rast_open_old(input_mapy->answer, "");
+
+    for (i = 0; i < n_predictors; i++)
+	mapx_buf[i] = Rast_allocate_d_buf();
+    mapy_buf = Rast_allocate_d_buf();
+
+    for (i = 0; i < n_predictors; i++) {
+	sumX[i] = sumsqX[i] = sumXY[i] = 0.0;
+	meanX[i] = varX[i] = sdX[i] = 0.0;
+	SSerr_without[i] = 0.0;
+    }
+    sumY = sumsqY = meanY = varY = sdY = 0.0;
+    sumYest = meanYest = varYest = sdYest = 0.0;
+    meanYres = varYres = sdYres = 0.0;
+
+    /* read input maps */
+    G_message(_("First pass..."));
+    n_valid = 0;
+    mapx_val[0] = 1.0;
+    for (r = 0; r < rows; r++) {
+	G_percent(r, rows, 2);
+
+	for (i = 0; i < n_predictors; i++)
+	    Rast_get_d_row(mapx_fd[i], mapx_buf[i], r);
+
+	Rast_get_d_row(mapy_fd, mapy_buf, r);
+
+	for (c = 0; c < cols; c++) {
+	    int isnull = 0;
+
+	    for (i = 0; i < n_predictors; i++) {
+		mapx_val[i + 1] = mapx_buf[i][c];
+		if (Rast_is_d_null_value(&(mapx_val[i + 1]))) {
+		    isnull = 1;
+		    break;
+		}
+	    }
+	    if (isnull)
+		continue;
+
+	    mapy_val = mapy_buf[c];
+	    if (Rast_is_d_null_value(&mapy_val))
+		continue;
+
+	    for (i = 0; i <= n_predictors; i++) {
+		double val1 = mapx_val[i];
+
+		for (j = i; j <= n_predictors; j++) {
+		    double val2 = mapx_val[j];
+
+		    m = &(m_all[0]);
+		    M(m, i, j) += val1 * val2;
+
+		    /* linear model without predictor k */
+		    for (k = 1; k <= n_predictors; k++) {
+			if (k != i && k != j) {
+			    int i2 = k > i ? i : i - 1;
+			    int j2 = k > j ? j : j - 1;
+
+			    m = &(m_all[k]);
+			    M(m, i2, j2) += val1 * val2;
+			}
+		    }
+		}
+
+		a[0][i] += mapy_val * val1;
+		for (k = 1; k <= n_predictors; k++) {
+		    if (k != i) {
+			int i2 = k > i ? i : i - 1;
+
+			a[k][i2] += mapy_val * val1;
+		    }
+		}
+
+		if (i > 0) {
+		    sumX[i - 1] += val1;
+		    sumsqX[i - 1] += val1 * val1;
+		    sumXY[i - 1] += val1 * mapy_val;
+		}
+	    }
+
+	    sumY += mapy_val;
+	    sumsqY += mapy_val * mapy_val;
+	    count++;
+	}
+    }
+    G_percent(rows, rows, 2);
+    
+    if (count < n_predictors + 1)
+	G_fatal_error(_("Not enough valid cells available"));
+
+    for (k = 0; k <= n_predictors; k++) {
+	m = &(m_all[k]);
+
+	/* TRANSPOSE VALUES IN UPPER HALF OF M TO OTHER HALF */
+	for (i = 1; i < m->n; i++)
+	    for (j = 0; j < i; j++)
+		M(m, i, j) = M(m, j, i);
+
+	if (!solvemat(m, a[k], B[k])) {
+	    for (i = 0; i <= n_predictors; i++) {
+		fprintf(stdout, "b%d=0.0\n", i);
+	    }
+	    G_fatal_error(_("Multiple regression failed"));
+	}
+    }
+    
+    /* second pass */
+    G_message(_("Second pass..."));
+
+    /* residuals output */
+    if (output_res->answer) {
+	mapres_fd = Rast_open_new(output_res->answer, DCELL_TYPE);
+	mapres_buf = Rast_allocate_d_buf();
+    }
+    else {
+	mapres_fd = -1;
+	mapres_buf = NULL;
+    }
+
+    /* estimates output */
+    if (output_est->answer) {
+	mapest_fd = Rast_open_new(output_est->answer, DCELL_TYPE);
+	mapest_buf = Rast_allocate_d_buf();
+    }
+    else {
+	mapest_fd = -1;
+	mapest_buf = NULL;
+    }
+
+    for (i = 0; i < n_predictors; i++)
+	meanX[i] = sumX[i] / count;
+
+    meanY = sumY / count;
+    SStot = SSerr = SSreg = 0.0;
+    for (r = 0; r < rows; r++) {
+	G_percent(r, rows, 2);
+
+	for (i = 0; i < n_predictors; i++)
+	    Rast_get_d_row(mapx_fd[i], mapx_buf[i], r);
+
+	Rast_get_d_row(mapy_fd, mapy_buf, r);
+	
+	if (mapres_buf)
+	    Rast_set_d_null_value(mapres_buf, cols);
+	if (mapest_buf)
+	    Rast_set_d_null_value(mapest_buf, cols);
+
+	for (c = 0; c < cols; c++) {
+	    int isnull = 0;
+
+	    for (i = 0; i < n_predictors; i++) {
+		mapx_val[i + 1] = mapx_buf[i][c];
+		if (Rast_is_d_null_value(&(mapx_val[i + 1]))) {
+		    isnull = 1;
+		    break;
+		}
+	    }
+	    if (isnull)
+		continue;
+
+	    yest = 0.0;
+	    for (i = 0; i <= n_predictors; i++) {
+		yest += B[0][i] * mapx_val[i];
+	    }
+	    if (mapest_buf)
+		mapest_buf[c] = yest;
+
+	    mapy_val = mapy_buf[c];
+	    if (Rast_is_d_null_value(&mapy_val))
+		continue;
+
+	    yres = mapy_val - yest;
+	    if (mapres_buf)
+		mapres_buf[c] = yres;
+
+	    SStot += (mapy_val - meanY) * (mapy_val - meanY);
+	    SSreg += (yest - meanY) * (yest - meanY);
+	    SSerr += yres * yres;
+
+	    for (k = 1; k <= n_predictors; k++) {
+		double yesti = 0.0;
+		double yresi;
+
+		/* linear model without predictor k */
+		for (i = 0; i <= n_predictors; i++) {
+		    if (i != k) {
+			j = k > i ? i : i - 1;
+			yesti += B[k][j] * mapx_val[i];
+		    }
+		}
+		yresi = mapy_val - yesti;
+
+		/* linear model without predictor k */
+		SSerr_without[k - 1] += yresi * yresi;
+
+		varX[k - 1] = (mapx_val[k] - meanX[k - 1]) * (mapx_val[k] - meanX[k - 1]);
+	    }
+	}
+
+	if (mapres_buf)
+	    Rast_put_d_row(mapres_fd, mapres_buf);
+	if (mapest_buf)
+	    Rast_put_d_row(mapest_fd, mapest_buf);
+    }
+    G_percent(rows, rows, 2);
+
+    fprintf(stdout, "n=%d\n", count);
+    /* coefficient of determination aka R squared */
+    Rsq = 1 - (SSerr / SStot);
+    fprintf(stdout, "Rsq=%f\n", Rsq);
+    /* adjusted coefficient of determination */
+    Rsqadj = 1 - ((SSerr * (count - 1)) / (SStot * (count - n_predictors - 1)));
+    fprintf(stdout, "Rsqadj=%f\n", Rsqadj);
+    /* F statistic */
+    /* F = ((SStot - SSerr) / (n_predictors)) / (SSerr / (count - n_predictors));
+     * , or: */
+    F = ((SStot - SSerr) * (count - n_predictors - 1)) / (SSerr * (n_predictors));
+    fprintf(stdout, "F=%f\n", F);
+
+    i = 0;
+    /* constant aka estimate for intercept in R */
+    fprintf(stdout, "b%d=%f\n", i, B[0][i]);
+    /* t score for R squared of the full model, unused */
+    t = sqrt(Rsq) * sqrt((count - 2) / (1 - Rsq));
+    /*
+    fprintf(stdout, "t%d=%f\n", i, t);
+    */
+
+    /* AIC, corrected AIC, and BIC information criteria for the full model */
+    AIC = count * log(SSerr / count) + 2 * (n_predictors + 1);
+    fprintf(stdout, "AIC=%f\n", AIC);
+    AICc = AIC + (2 * n_predictors * (n_predictors + 1)) / (count - n_predictors - 1);
+    fprintf(stdout, "AICc=%f\n", AICc);
+    BIC = count * log(SSerr / count) + log(count) * (n_predictors + 1);
+    fprintf(stdout, "BIC=%f\n", BIC);
+
+    /* error variance of the model, identical to R */
+    SE = SSerr / (count - n_predictors - 1);
+    /*
+    fprintf(stdout, "SE=%f\n", SE);
+    fprintf(stdout, "SSerr=%f\n", SSerr);
+    */
+
+    for (i = 0; i < n_predictors; i++) {
+
+	fprintf(stdout, "\nb%d=%f\n", i + 1, B[0][i + 1]);
+	if (n_predictors > 1) {
+	    double Rsqi, SEi, sumsqX_corr;
+
+	    /* corrected sum of squares for predictor [i] */
+	    sumsqX_corr = sumsqX[i] - sumX[i] * sumX[i] / (count - n_predictors - 1);
+
+	    /* standard error SE for predictor [i] */
+
+	    /* SE[i] with only one predictor: sqrt(SE / sumsqX_corr)
+	     * this does not work with more than one predictor */
+	    /* in R, SEi is sqrt(diag(R) * resvar) with
+	     * R = ???
+	     * resvar = rss / rdf = SE global
+	     * rss = sum of squares of the residuals
+	     * rdf = residual degrees of freedom = count - n_predictors - 1 */
+	    SEi = sqrt(SE / (Rsq * sumsqX_corr));
+	    /*
+	    fprintf(stdout, "SE%d=%f\n", i + 1, SEi);
+	    */
+
+	    /* Sum of squares for predictor [i] */
+	    /*
+	    fprintf(stdout, "SSerr%d=%f\n", i + 1, SSerr_without[i] - SSerr);
+	    */
+
+	    /* R squared of the model without predictor [i] */
+	    /* Rsqi = 1 - SSerr_without[i] / SStot; */
+	    /* the additional amount of variance explained
+	     * when including predictor [i] :
+	     * Rsq - Rsqi */
+	    Rsqi = (SSerr_without[i] - SSerr) / SStot;
+	    fprintf(stdout, "Rsq%d=%f\n", i + 1, Rsqi);
+
+	    /* t score for Student's t distribution, unused */
+	    t = (B[0][i + 1]) / SEi;
+	    /*
+	    fprintf(stdout, "t%d=%f\n", i + 1, t);
+	    */
+
+	    /* F score for Fisher's F distribution
+	     * here: F score to test if including predictor [i]
+	     * yields a significant improvement
+	     * after Lothar Sachs, Angewandte Statistik:
+	     * F = (Rsq - Rsqi) * (count - n_predictors - 1) / (1 - Rsq) */
+	    /* same like Sumsq / SE */
+	    /* same like (SSerr_without[i] / SSerr - 1) * (count - n_predictors - 1) */
+	    /* same like R-stats when entered in R-stats as last predictor */
+	    F = (SSerr_without[i] / SSerr - 1) * (count - n_predictors - 1);
+	    fprintf(stdout, "F%d=%f\n", i + 1, F);
+
+	    /* AIC, corrected AIC, and BIC information criteria for
+	     * the model without predictor [i] */
+	    AIC = count * log(SSerr_without[i] / count) + 2 * (n_predictors);
+	    fprintf(stdout, "AIC%d=%f\n", i + 1, AIC);
+	    AICc = AIC + (2 * (n_predictors - 1) * n_predictors) / (count - n_predictors - 2);
+	    fprintf(stdout, "AICc%d=%f\n", i + 1, AICc);
+	    BIC = count * log(SSerr_without[i] / count) + (n_predictors - 1) * log(count);
+	    fprintf(stdout, "BIC%d=%f\n", i + 1, BIC);
+	}
+    }
+    
+
+    for (i = 0; i < n_predictors; i++) {
+	Rast_close(mapx_fd[i]);
+	G_free(mapx_buf[i]);
+    }
+    Rast_close(mapy_fd);
+    G_free(mapy_buf);
+    
+    if (mapres_fd > -1) {
+	struct History history;
+
+	Rast_close(mapres_fd);
+	G_free(mapres_buf);
+
+	Rast_short_history(output_res->answer, "raster", &history);
+	Rast_command_history(&history);
+	Rast_write_history(output_res->answer, &history);
+    }
+
+    if (mapest_fd > -1) {
+	struct History history;
+
+	Rast_close(mapest_fd);
+	G_free(mapest_buf);
+
+	Rast_short_history(output_est->answer, "raster", &history);
+	Rast_command_history(&history);
+	Rast_write_history(output_est->answer, &history);
+    }
+
+    exit(EXIT_SUCCESS);
+}

+ 84 - 0
raster/r.regression.multi/r.regression.multi.html

@@ -0,0 +1,84 @@
+<h2>DESCRIPTION</h2>
+
+<em>r.regression.multi</em> calculates a multiple linear regression from
+raster maps, according to the formula
+<div class="code"><pre>
+Y = b0 + sum(bi*Xi) + E
+</pre></div>
+where
+<div class="code"><pre>
+X = {X1, X2, ..., Xm}
+m = number of explaining variables
+Y = {y1, y2, ..., yn}
+Xi = {xi1, xi2, ..., xin}
+E = {e1, e2, ..., en}
+n = number of observations (cases)
+</pre></div>
+
+In R notation:
+<div class="code"><pre>
+Y ~ sum(bi*Xi)
+b0 is the intercept, X0 is set to 1
+</pre></div>
+
+<p>
+<em>r.regression.multi</em> is designed for large datasets that can not
+be processed in R. A p value is therefore not provided, because even
+very small, meaningless effects will become significant with a large
+number of cells. Instead it is recommended to judge by the estimator b,
+the amount of variance explained (R squared for a given variable) and
+the gain in AIC (AIC without a given variable minus AIC global must be
+positive) whether the inclusion of a given explaining variable in the
+model is justified.
+
+<h4>The global model</h4>
+The <em>b</em> coefficients (b0 is offset), R squared or coefficient of
+determination (Rsq) and F are identical to the ones obtained from
+R-stats's lm() function and R-stats's anova() function. The AIC value
+is identical to the one obtained from R-stats's stepAIC() function
+(in case of backwards stepping, identical to the Start value). The
+AIC value corrected for the number of explaining variables and the BIC
+(Bayesian Information Criterion) value follow the logic of AIC.
+
+<h4>The explaining variables</h4>
+R squared for each explaining variable represents the additional amount
+of explained variance when including this variable compared to when
+excluding this variable, that is, this amount of variance is explained
+by the current explaining variable after taking into consideration all
+the other explaining variables.
+<p>
+The F score for each explaining variable allows to test if the inclusion
+of this variable significantly increases the explaining power of the
+model, relative to the global model excluding this explaining variable.
+That means that the F value for a given explaining variable is only
+identical to the F value of the R-function <em>summary.aov</em> if the
+given explaining variable is the last variable in the R-formula. While
+R successively includes one variable after another in the order
+specified by the formula and at each step calculates the F value
+expressing the gain by including the current variable in addition to the
+previous variables, <em>r.regression.multi</em> calculates the F-value
+expressing the gain by including the current variable in addition to all
+other variables, not only the previous variables.
+<p>
+The AIC value is identical to the one obtained from the R-function
+stepAIC() when excluding this variable from the full model. The AIC
+value corrected for the number of explaining variables and the BIC value
+(Bayesian Information Criterion) value follow the logic of AIC. BIC is
+identical to the R-function stepAIC with k = log(n). AICc is not
+available through the R-function stepAIC.
+
+<h2>EXAMPLE</h2>
+
+Multiple regression with soil K-factor and elevation, aspect, and slope
+(North Carolina dataset). Output maps are the residuals and estimates:
+<div class="code"><pre>
+g.region rast=soils_Kfactor -p
+r.regression.multi mapx=elevation,aspect,slope mapy=soils_Kfactor \
+  residuals=soils_Kfactor.resid estimates=soils_Kfactor.estim
+</pre></div>
+
+<h2>AUTHOR</h2>
+
+Markus Metz
+
+<p><i>Last changed: $Date$</i>