|
@@ -0,0 +1,488 @@
|
|
|
+/****************************************************************************
|
|
|
+ *
|
|
|
+ * MODULE: Vector library
|
|
|
+ *
|
|
|
+ * AUTHOR(S): Markus Metz
|
|
|
+ *
|
|
|
+ * PURPOSE: Lower level functions for reading/writing/manipulating vectors.
|
|
|
+ *
|
|
|
+ * COPYRIGHT: (C) 2009 by the GRASS Development Team
|
|
|
+ *
|
|
|
+ * This program is free software under the GNU General Public
|
|
|
+ * License (>=v2). Read the file COPYING that comes with GRASS
|
|
|
+ * for details.
|
|
|
+ *
|
|
|
+ *****************************************************************************/
|
|
|
+
|
|
|
+/* balanced binary search tree implementation
|
|
|
+ * this one is a Red Black Tree, the bare version, no parent pointers, no threads
|
|
|
+ * The core code comes from Julienne Walker's tutorials on
|
|
|
+ * binary search trees: insert, remove, balance
|
|
|
+ * support for any kind of data structures comes from libavl (GPL >= 2)
|
|
|
+ *
|
|
|
+ * I could have used some off-the-shelf solution, but that's boring
|
|
|
+ *
|
|
|
+ * Red Black Trees are used to maintain a data structure that allows
|
|
|
+ * search, insertion and deletion in O(log N) time
|
|
|
+ * This is needed for large vectors with many features
|
|
|
+ */
|
|
|
+
|
|
|
+#include <assert.h>
|
|
|
+#include <stdio.h>
|
|
|
+#include <stdlib.h>
|
|
|
+#include <string.h>
|
|
|
+#include <grass/gis.h>
|
|
|
+#include <grass/glocale.h>
|
|
|
+#include <grass/vect/rbtree.h>
|
|
|
+
|
|
|
+/* internal functions */
|
|
|
+void rbtree_destroy2(struct RB_NODE *);
|
|
|
+struct RB_NODE *rbtree_single(struct RB_NODE *, int);
|
|
|
+struct RB_NODE *rbtree_double(struct RB_NODE *, int);
|
|
|
+void *rbtree_first(struct RB_TRAV *);
|
|
|
+void *rbtree_next(struct RB_TRAV *);
|
|
|
+struct RB_NODE *rbtree_make_node(size_t, void *);
|
|
|
+int is_red(struct RB_NODE *);
|
|
|
+
|
|
|
+
|
|
|
+/* create new tree and initialize
|
|
|
+ * return pointer to new tree or NULL for memory allocation error
|
|
|
+ */
|
|
|
+
|
|
|
+struct RB_TREE *rbtree_create(rb_compare_fn *compare, size_t rb_datasize)
|
|
|
+{
|
|
|
+ struct RB_TREE *tree = malloc(sizeof(*tree));
|
|
|
+
|
|
|
+ if (tree == NULL) {
|
|
|
+ G_warning("RB Search Tree: Out of memory!");
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ tree->datasize = rb_datasize;
|
|
|
+ tree->rb_compare = compare;
|
|
|
+ tree->count = 0;
|
|
|
+ tree->root = NULL;
|
|
|
+
|
|
|
+ return tree;
|
|
|
+}
|
|
|
+
|
|
|
+/* add an item to a tree
|
|
|
+ * returns 1 on success, 0 on failure
|
|
|
+ * non-recursive top-down insertion
|
|
|
+ * the algorithm does not allow duplicates and also does not warn about a duplicate
|
|
|
+ */
|
|
|
+int rbtree_insert(struct RB_TREE *tree, void *data)
|
|
|
+{
|
|
|
+ if (tree->root == NULL) {
|
|
|
+ /* create a new root node for tree */
|
|
|
+ tree->root = rbtree_make_node(tree->datasize, data);
|
|
|
+ if (tree->root == NULL)
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ struct RB_NODE head = {0}; /* False tree root */
|
|
|
+
|
|
|
+ struct RB_NODE *g, *t; /* Grandparent & parent */
|
|
|
+ struct RB_NODE *p, *q; /* Iterator & parent */
|
|
|
+ int dir = 0, last = 0;
|
|
|
+
|
|
|
+ /* Set up helpers */
|
|
|
+ t = &head;
|
|
|
+ g = p = NULL;
|
|
|
+ q = t->link[1] = tree->root;
|
|
|
+
|
|
|
+ /* Search down the tree */
|
|
|
+ for ( ; ; ) {
|
|
|
+ if (q == NULL) {
|
|
|
+ /* Insert new node at the bottom */
|
|
|
+ p->link[dir] = q = rbtree_make_node(tree->datasize, data);
|
|
|
+ if (q == NULL)
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ else if (is_red(q->link[0]) && is_red(q->link[1])) {
|
|
|
+ /* Color flip */
|
|
|
+ q->red = 1;
|
|
|
+ q->link[0]->red = 0;
|
|
|
+ q->link[1]->red = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Fix red violation */
|
|
|
+ if (is_red(q) && is_red(p)) {
|
|
|
+ int dir2 = t->link[1] == g;
|
|
|
+
|
|
|
+ if (q == p->link[last])
|
|
|
+ t->link[dir2] = rbtree_single(g, !last);
|
|
|
+ else
|
|
|
+ t->link[dir2] = rbtree_double(g, !last);
|
|
|
+ }
|
|
|
+
|
|
|
+ last = dir;
|
|
|
+ dir = tree->rb_compare(q->data, data);
|
|
|
+
|
|
|
+ /* Stop if found */
|
|
|
+ if (dir == 2)
|
|
|
+ break;
|
|
|
+
|
|
|
+ /* Update helpers */
|
|
|
+ if (g != NULL)
|
|
|
+ t = g;
|
|
|
+
|
|
|
+ g = p, p = q;
|
|
|
+ q = q->link[dir];
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Update root */
|
|
|
+ tree->root = head.link[1];
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Make root black */
|
|
|
+ tree->root->red = 0;
|
|
|
+
|
|
|
+ tree->count++;
|
|
|
+
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+/* delete an item from a tree
|
|
|
+ * returns 1 on successful deletion
|
|
|
+ * returns 0 if data item was not found
|
|
|
+ * non-recursive top-down deletion
|
|
|
+ */
|
|
|
+int rbtree_remove(struct RB_TREE *tree, const void *data)
|
|
|
+{
|
|
|
+ struct RB_NODE head = {0}; /* False tree root */
|
|
|
+ struct RB_NODE *q, *p, *g; /* Helpers */
|
|
|
+ struct RB_NODE *f = NULL; /* Found item */
|
|
|
+ int dir = 1, found = 0;
|
|
|
+
|
|
|
+ if (tree->root == NULL) {
|
|
|
+ return 0; /* empty tree, nothing to remove */
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Set up helpers */
|
|
|
+ q = &head;
|
|
|
+ g = p = NULL;
|
|
|
+ q->link[1] = tree->root;
|
|
|
+
|
|
|
+ /* Search and push a red down */
|
|
|
+ while (q->link[dir] != NULL) {
|
|
|
+ int last = dir;
|
|
|
+
|
|
|
+ /* Update helpers */
|
|
|
+ g = p, p = q;
|
|
|
+ q = q->link[dir];
|
|
|
+ dir = tree->rb_compare(q->data, data);
|
|
|
+
|
|
|
+ /* Save found node */
|
|
|
+ if (dir == 2) {
|
|
|
+ f = q;
|
|
|
+ dir = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Push the red node down */
|
|
|
+ if (!is_red(q) && !is_red(q->link[dir])) {
|
|
|
+ if (is_red(q->link[!dir]))
|
|
|
+ p = p->link[last] = rbtree_single(q, dir);
|
|
|
+ else if (!is_red(q->link[!dir])) {
|
|
|
+ struct RB_NODE *s = p->link[!last];
|
|
|
+
|
|
|
+ if (s != NULL) {
|
|
|
+ if (!is_red(s->link[!last]) &&
|
|
|
+ !is_red(s->link[last])) {
|
|
|
+ /* Color flip */
|
|
|
+ p->red = 0;
|
|
|
+ s->red = 1;
|
|
|
+ q->red = 1;
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ int dir2 = g->link[1] == p;
|
|
|
+
|
|
|
+ if (is_red(s->link[last]))
|
|
|
+ g->link[dir2] = rbtree_double(p, last);
|
|
|
+ else if (is_red(s->link[!last]))
|
|
|
+ g->link[dir2] = rbtree_single(p, last);
|
|
|
+
|
|
|
+ /* Ensure correct coloring */
|
|
|
+ q->red = g->link[dir2]->red = 1;
|
|
|
+ g->link[dir2]->link[0]->red = 0;
|
|
|
+ g->link[dir2]->link[1]->red = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Replace and remove if found */
|
|
|
+ if (f != NULL) {
|
|
|
+ p->link[p->link[1] == q] = q->link[q->link[0] == NULL];
|
|
|
+ free(q->data);
|
|
|
+ free(q);
|
|
|
+ tree->count--;
|
|
|
+ found = 1;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ G_debug(2, "data not found in search tree");
|
|
|
+
|
|
|
+ /* Update root and make it black */
|
|
|
+ tree->root = head.link[1];
|
|
|
+ if ( tree->root != NULL)
|
|
|
+ tree->root->red = 0;
|
|
|
+
|
|
|
+ return found;
|
|
|
+}
|
|
|
+
|
|
|
+/* find data item in tree
|
|
|
+ * return pointer to data item if found else NULL
|
|
|
+ */
|
|
|
+void *rbtree_find(struct RB_TREE *tree, const void *data)
|
|
|
+{
|
|
|
+ struct RB_NODE *curr_node = tree->root;
|
|
|
+ int dir = 0;
|
|
|
+
|
|
|
+ assert(tree && data);
|
|
|
+
|
|
|
+ while (curr_node != NULL) {
|
|
|
+ dir = tree->rb_compare(curr_node->data, data);
|
|
|
+ if (dir == 2)
|
|
|
+ return curr_node->data;
|
|
|
+ else {
|
|
|
+ curr_node = curr_node->link[dir];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return NULL;
|
|
|
+}
|
|
|
+
|
|
|
+/* initialize tree traversal
|
|
|
+ * (re-)sets trav structure
|
|
|
+ * return pointer to trav struct or NULL on memory allocation error
|
|
|
+ */
|
|
|
+void rbtree_init_trav(struct RB_TRAV *trav, struct RB_TREE *tree)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+
|
|
|
+ assert(trav && tree);
|
|
|
+
|
|
|
+ trav->tree = tree;
|
|
|
+ trav->curr_node = tree->root;
|
|
|
+ trav->first = 1;
|
|
|
+
|
|
|
+ for (i = 0; i < RBTREE_MAX_HEIGHT; i++)
|
|
|
+ trav->up[i] = NULL;
|
|
|
+}
|
|
|
+
|
|
|
+/* traverse the tree in ascending order
|
|
|
+ * useful to get all items in the tree non-recursively
|
|
|
+ * return pointer to data
|
|
|
+ * struct RB_TRAV *trav needs to be initialized first
|
|
|
+ */
|
|
|
+void *rbtree_traverse(struct RB_TRAV *trav)
|
|
|
+{
|
|
|
+ assert(trav);
|
|
|
+ if (trav->curr_node == NULL) {
|
|
|
+ if (trav->first)
|
|
|
+ G_warning("empty tree");
|
|
|
+ else
|
|
|
+ G_warning("finished traversing");
|
|
|
+
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (trav->first) {
|
|
|
+ trav->first = 0;
|
|
|
+ return rbtree_first(trav);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ return rbtree_next(trav);
|
|
|
+}
|
|
|
+
|
|
|
+/* two functions needed to fully traverse the tree: initialize and continue
|
|
|
+ * useful to get all items in the tree non-recursively
|
|
|
+ * this one here uses a stack
|
|
|
+ * parent pointers or threads would also be possible
|
|
|
+ * but these would need to be added to RB_NODE
|
|
|
+ * -> more memory needed for standard operations
|
|
|
+ */
|
|
|
+
|
|
|
+/* start traversing the tree */
|
|
|
+void *rbtree_first(struct RB_TRAV *trav)
|
|
|
+{
|
|
|
+ trav->top = 0;
|
|
|
+
|
|
|
+ /* get smallest item */
|
|
|
+ if (trav->curr_node != NULL) {
|
|
|
+ while (trav->curr_node->link[0] != NULL) {
|
|
|
+ trav->up[trav->top++] = trav->curr_node;
|
|
|
+ trav->curr_node = trav->curr_node->link[0];
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (trav->curr_node != NULL) {
|
|
|
+ return trav->curr_node->data; /* return smallest item */
|
|
|
+ }
|
|
|
+ else
|
|
|
+ return NULL; /* empty tree */
|
|
|
+}
|
|
|
+
|
|
|
+/* continue traversing the tree */
|
|
|
+void *rbtree_next(struct RB_TRAV *trav)
|
|
|
+{
|
|
|
+ if (trav->curr_node->link[1] != NULL) {
|
|
|
+ /* something on the right side: larger item */
|
|
|
+ trav->up[trav->top++] = trav->curr_node;
|
|
|
+ trav->curr_node = trav->curr_node->link[1];
|
|
|
+
|
|
|
+ /* go down, find smallest item in this branch */
|
|
|
+ while (trav->curr_node->link[0] != NULL) {
|
|
|
+ trav->up[trav->top++] = trav->curr_node;
|
|
|
+ trav->curr_node = trav->curr_node->link[0];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ /* at smallest item in this branch, go back up */
|
|
|
+ struct RB_NODE *last;
|
|
|
+ do {
|
|
|
+ if (trav->top == 0) {
|
|
|
+ trav->curr_node = NULL;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ last = trav->curr_node;
|
|
|
+ trav->curr_node = trav->up[--trav->top];
|
|
|
+ } while (last == trav->curr_node->link[1]);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (trav->curr_node != NULL) {
|
|
|
+ return trav->curr_node->data;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ return NULL; /* finished traversing */
|
|
|
+}
|
|
|
+
|
|
|
+/* destroy the tree */
|
|
|
+void rbtree_destroy(struct RB_TREE *tree) {
|
|
|
+ rbtree_destroy2(tree->root);
|
|
|
+}
|
|
|
+
|
|
|
+void rbtree_destroy2(struct RB_NODE *root)
|
|
|
+{
|
|
|
+ if (root != NULL) {
|
|
|
+ rbtree_destroy2(root->link[0]);
|
|
|
+ rbtree_destroy2(root->link[1]);
|
|
|
+ free(root->data);
|
|
|
+ free(root);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*!
|
|
|
+ * internal funtions used for Red Black Tree maintenance
|
|
|
+ */
|
|
|
+
|
|
|
+/* add a new node to the tree */
|
|
|
+struct RB_NODE *rbtree_make_node(size_t datasize, void *data)
|
|
|
+{
|
|
|
+ struct RB_NODE *new_node = malloc(sizeof(*new_node));
|
|
|
+
|
|
|
+ if (new_node != NULL) {
|
|
|
+ new_node->data = malloc(datasize);
|
|
|
+ if (new_node->data == NULL)
|
|
|
+ G_fatal_error("RB Search Tree: Out of memory!");
|
|
|
+
|
|
|
+ memcpy(new_node->data, data, datasize);
|
|
|
+ new_node->red = 1; /* 1 is red, 0 is black */
|
|
|
+ new_node->link[0] = NULL;
|
|
|
+ new_node->link[1] = NULL;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ G_fatal_error("RB Search Tree: Out of memory!");
|
|
|
+
|
|
|
+ return new_node;
|
|
|
+}
|
|
|
+
|
|
|
+/* check for red violation */
|
|
|
+int is_red(struct RB_NODE *root)
|
|
|
+{
|
|
|
+ if (root)
|
|
|
+ return root->red == 1;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/* single rotation */
|
|
|
+struct RB_NODE *rbtree_single(struct RB_NODE *root, int dir)
|
|
|
+{
|
|
|
+ struct RB_NODE *newroot = root->link[!dir];
|
|
|
+
|
|
|
+ root->link[!dir] = newroot->link[dir];
|
|
|
+ newroot->link[dir] = root;
|
|
|
+
|
|
|
+ root->red = 1;
|
|
|
+ newroot->red = 0;
|
|
|
+
|
|
|
+ return newroot;
|
|
|
+}
|
|
|
+
|
|
|
+/* double rotation */
|
|
|
+struct RB_NODE *rbtree_double(struct RB_NODE *root, int dir)
|
|
|
+{
|
|
|
+ root->link[!dir] = rbtree_single(root->link[!dir], !dir);
|
|
|
+ return rbtree_single(root, dir);
|
|
|
+}
|
|
|
+
|
|
|
+/* only used for debugging */
|
|
|
+/* check for errors */
|
|
|
+int rbtree_debug(struct RB_TREE *tree, struct RB_NODE *root)
|
|
|
+{
|
|
|
+ int lh, rh;
|
|
|
+
|
|
|
+ if (root == NULL)
|
|
|
+ return 1;
|
|
|
+ else {
|
|
|
+ struct RB_NODE *ln = root->link[0];
|
|
|
+ struct RB_NODE *rn = root->link[1];
|
|
|
+ int lcmp, rcmp;
|
|
|
+
|
|
|
+ /* Consecutive red links */
|
|
|
+ if (is_red(root)) {
|
|
|
+ if (is_red(ln) || is_red(rn)) {
|
|
|
+ G_warning("Red Black Tree debugging: Red violation");
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ lh = rbtree_debug(tree, ln);
|
|
|
+ rh = rbtree_debug(tree, rn);
|
|
|
+
|
|
|
+ if (ln) {
|
|
|
+ lcmp = tree->rb_compare(ln->data, root->data);
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ lcmp = 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (rn) {
|
|
|
+ rcmp = tree->rb_compare(rn->data, root->data);
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ rcmp = 1;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ /* Invalid binary search tree */
|
|
|
+ if ((ln != NULL && (lcmp == 0 || lcmp == 2))
|
|
|
+ || (rn != NULL && (rcmp == 1 || rcmp == 2))) {
|
|
|
+ G_warning("Red Black Tree debugging: Binary tree violation" );
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Black height mismatch */
|
|
|
+ if (lh != 0 && rh != 0 && lh != rh) {
|
|
|
+ G_warning("Red Black Tree debugging: Black violation");
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Only count black links */
|
|
|
+ if (lh != 0 && rh != 0)
|
|
|
+ return is_red(root) ? lh : lh + 1;
|
|
|
+ else
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+}
|