Преглед изворни кода

HTML demessyfied

git-svn-id: https://svn.osgeo.org/grass/grass/trunk@48839 15284696-431f-4ddb-bdfa-cd5b030d7da7
Markus Neteler пре 13 година
родитељ
комит
bdd041c76b

+ 0 - 1
imagery/i.albedo/i.albedo.html

@@ -19,7 +19,6 @@ Maybe change input requirement of MODIS to [0.0-1.0]?
   <a href="i.vi.html">i.vi</a>
   <a href="i.vi.html">i.vi</a>
 </em>
 </em>
 
 
-
 <h2>AUTHORS</h2>
 <h2>AUTHORS</h2>
 
 
 Yann Chemin, International Rice Research Institute, The Philippines
 Yann Chemin, International Rice Research Institute, The Philippines

+ 16 - 9
imagery/i.aster.toar/i.aster.toar.html

@@ -1,11 +1,22 @@
 <h2>DESCRIPTION</h2>
 <h2>DESCRIPTION</h2>
 
 
-<em>i.aster.toar</em> calculates the Top Of Atmosphere (TOA) reflectance for Terra-Aster L1B in the visible, NIR and SWIR bands (9+1 bands) and brigthness temperature for the TIR bands (5 bands), all from L1B DN values. 
-It is useful after importing your Aster imagery from storage format that is generally in standard DN values range.
-The order of input bands is VNIR: 1,2,3N,3B, SWIR: 4,5,6,7,8,9 TIR: 10,11,12,13,14 in one comma-separated list.
+<em>i.aster.toar</em> calculates the Top Of Atmosphere (TOA) reflectance
+for Terra-Aster L1B in the visible, NIR and SWIR bands (9+1 bands) and
+brigthness temperature for the TIR bands (5 bands), all from L1B DN values. 
+It is useful after importing your Aster imagery from storage format that
+is generally in standard DN values range.
+The order of input bands is
+<ul>
+<li> VNIR: 1,2,3N,3B
+<li> SWIR: 4,5,6,7,8,9
+<li> TIR: 10,11,12,13,14
+</ul>
+in one comma-separated list.
 
 
 <h2>NOTES</h2>
 <h2>NOTES</h2>
-Internally, a gain code is defined to modify gains according to spectral bands following the GeoSystems GmbH ATCOR Ver. 2.0 Calibration Files. The function is defined in gain_aster.c file.
+Internally, a gain code is defined to modify gains according to spectral
+bands following the GeoSystems GmbH ATCOR Ver. 2.0 Calibration Files.
+The function is defined in gain_aster.c file.
 
 
 <div class="code"><pre>
 <div class="code"><pre>
 /*Gain Code*/
 /*Gain Code*/
@@ -15,8 +26,6 @@ Internally, a gain code is defined to modify gains according to spectral bands f
     /*3 - Low 2(Not Applicable for Band 1-3N/B and 10-14)*/
     /*3 - Low 2(Not Applicable for Band 1-3N/B and 10-14)*/
 </pre></div>
 </pre></div>
 
 
-<h2>TODO</h2>
-
 <h2>SEE ALSO</h2>
 <h2>SEE ALSO</h2>
 
 
 <em>
 <em>
@@ -24,11 +33,9 @@ Internally, a gain code is defined to modify gains according to spectral bands f
 <a href="r.in.aster.html">r.in.aster</A><br>
 <a href="r.in.aster.html">r.in.aster</A><br>
 </em>
 </em>
 
 
-
 <h2>AUTHORS</h2>
 <h2>AUTHORS</h2>
 
 
-Yann Chemin, CSU, Australia<br>
-
+Yann Chemin, CSU, Australia
 
 
 <p>
 <p>
 <i>Last changed: $Date$</i>
 <i>Last changed: $Date$</i>

+ 1 - 2
imagery/i.biomass/i.biomass.html

@@ -33,8 +33,7 @@ remove Latitude, DOY and Tsw from input and replace with a raster input compatib
 
 
 <h2>AUTHORS</h2>
 <h2>AUTHORS</h2>
 
 
-Yann Chemin, Bec de Mortagne, France<br>
-
+Yann Chemin, Bec de Mortagne, France
 
 
 <p>
 <p>
 <i>Last changed: $Date$</i>
 <i>Last changed: $Date$</i>

+ 1 - 5
imagery/i.eb.eta/i.eb.eta.html

@@ -18,9 +18,6 @@ Full ETa processing will need those:
 
 
 <p>For more details on the algorithms see [1][2][3].
 <p>For more details on the algorithms see [1][2][3].
 
 
-<h2>TODO</h2>
-
-
 <h2>SEE ALSO</h2>
 <h2>SEE ALSO</h2>
 
 
 <em>
 <em>
@@ -46,8 +43,7 @@ agricultural areas. Remote Sensing. -(-):,2009. (submitted))
 
 
 <h2>AUTHORS</h2>
 <h2>AUTHORS</h2>
 
 
-Yann Chemin, Asian Institute of Technology, Thailand<br>
-
+Yann Chemin, Asian Institute of Technology, Thailand
 
 
 <p>
 <p>
 <i>Last changed: $Date$</i>
 <i>Last changed: $Date$</i>

+ 1 - 6
imagery/i.eb.evapfr/i.eb.evapfr.html

@@ -7,10 +7,6 @@ heat flux (see i.eb.g0) and sensible heat flux (see i.eb.h_SEBAL01).
 A flag adds a root zone empirical soil moisture output from the article of
 A flag adds a root zone empirical soil moisture output from the article of
 Makin, Molden and Bastiaanssen (2001).
 Makin, Molden and Bastiaanssen (2001).
 
 
-<h2>NOTES</h2>
-
-<h2>TODO</h2>
-
 <h2>SEE ALSO</h2>
 <h2>SEE ALSO</h2>
 
 
 <em>
 <em>
@@ -35,8 +31,7 @@ agricultural areas. Remote Sensing. -(-):,2009. (submitted))
 
 
 <h2>AUTHORS</h2>
 <h2>AUTHORS</h2>
 
 
-Yann Chemin, Asian Institute of Technology, Thailand<br>
-
+Yann Chemin, Asian Institute of Technology, Thailand
 
 
 <p>
 <p>
 <i>Last changed: $Date$</i>
 <i>Last changed: $Date$</i>

+ 6 - 8
imagery/i.eb.h_SEBAL01/i.eb.h_sebal01.html

@@ -20,8 +20,6 @@ Full process will need those:
 [W/m2] after Bastiaanssen, 1995 in [1], used in this form in 2001 by [2]. Implemented
 [W/m2] after Bastiaanssen, 1995 in [1], used in this form in 2001 by [2]. Implemented
 in this code in [3].
 in this code in [3].
 
 
-<h2>OPTIONS</h2>
-
 <h2>NOTES</h2>
 <h2>NOTES</h2>
 <ul>
 <ul>
 <li> z0m can be alculated by i.eb.z0m or i.eb.z0m0 (grass-addons).
 <li> z0m can be alculated by i.eb.z0m or i.eb.z0m0 (grass-addons).
@@ -43,25 +41,25 @@ in this code in [3].
 
 
 <h2>REFERENCES</h2>
 <h2>REFERENCES</h2>
 
 
-  <p>[1] Bastiaanssen, W.G.M., 1995.
+<p>[1] Bastiaanssen, W.G.M., 1995.
   Estimation of Land surface paramters by remote sensing under clear-sky
   Estimation of Land surface paramters by remote sensing under clear-sky
 conditions. PhD thesis, Wageningen University, Wageningen, The Netherlands.
 conditions. PhD thesis, Wageningen University, Wageningen, The Netherlands.
 
 
-  <p>[2] Chemin Y., Alexandridis T.A., 2001. Improving spatial resolution of ET
+<p>[2] Chemin Y., Alexandridis T.A., 2001. Improving spatial resolution of ET
 seasonal for irrigated rice in Zhanghe, China}''. Asian Journal of
 seasonal for irrigated rice in Zhanghe, China}''. Asian Journal of
 Geoinformatics. 5(1):3-11,2004. 
 Geoinformatics. 5(1):3-11,2004. 
 
 
-  <p>[3] Alexandridis T.K., Cherif I., Chemin Y., Silleos N.G., Stavrinos E.,
+<p>[3] Alexandridis T.K., Cherif I., Chemin Y., Silleos N.G., Stavrinos E.,
 Zalidis G.C. Integrated methodology for estimating water use in Mediterranean
 Zalidis G.C. Integrated methodology for estimating water use in Mediterranean
 agricultural areas. Remote Sensing, 1(3):445-465, 2009.
 agricultural areas. Remote Sensing, 1(3):445-465, 2009.
 
 
 
 
 <h2>AUTHORS</h2>
 <h2>AUTHORS</h2>
 
 
-  <i>Yann Chemin, International Rice Research Institute, Los Banos, The
+Yann Chemin, International Rice Research Institute, Los Banos, The
 Philippines.
 Philippines.
-  </i>
-  <p>Contact: <a href="mailto:yann.chemin@gmail.com"> Yann chemin</a>
+
+<p>Contact: <a href="mailto:yann.chemin@gmail.com"> Yann chemin</a>
 
 
 
 
 <p><i>Last changed: $Date$</i>
 <p><i>Last changed: $Date$</i>

+ 0 - 6
imagery/i.eb.soilheatflux/i.eb.soilheatflux.html

@@ -6,12 +6,6 @@ It takes input of Albedo, NDVI, Surface Skin temperature, Net Radiation (see
 <em>r.sun</em>), time of satellite overpass, and a flag for the Roerink empirical
 <em>r.sun</em>), time of satellite overpass, and a flag for the Roerink empirical
 modification from the HAPEX-Sahel experiment.
 modification from the HAPEX-Sahel experiment.
 
 
-<h2>NOTES</h2>
-
-
-<h2>TODO</h2>
-
-
 <h2>SEE ALSO</h2>
 <h2>SEE ALSO</h2>
 
 
 <em>
 <em>

+ 5 - 10
imagery/i.emissivity/i.emissivity.html

@@ -1,13 +1,10 @@
 <h2>DESCRIPTION</h2>
 <h2>DESCRIPTION</h2>
 
 
-<em>i.emissivity</em> calculates the emissivity in the longwave radiation spectrum, according to the semi-empirical equation related to NDVI by Caselles and Colles (1997), valid in the NDVI range of 0.16 to 0.74.
-
-Estimation in the 8-14 micrometers range for sparse canopy
-
-<h2>NOTES</h2>
-
-
-<h2>TODO</h2>
+<em>i.emissivity</em> calculates the emissivity in the longwave radiation
+spectrum, according to the semi-empirical equation related to NDVI by
+Caselles and Colles (1997), valid in the NDVI range of 0.16 to 0.74.
+<p>
+Estimation in the 8-14 micrometers range for sparse canopy...
 
 
 
 
 <h2>SEE ALSO</h2>
 <h2>SEE ALSO</h2>
@@ -16,10 +13,8 @@ Estimation in the 8-14 micrometers range for sparse canopy
 <a href="i.eb.netrad.html">i.eb.netrad</A><br>
 <a href="i.eb.netrad.html">i.eb.netrad</A><br>
 </em>
 </em>
 
 
-
 <h2>AUTHORS</h2>
 <h2>AUTHORS</h2>
 Yann Chemin, GRASS Development Team<br>
 Yann Chemin, GRASS Development Team<br>
 
 
-
 <p>
 <p>
 <i>Last changed: $Date$</i>
 <i>Last changed: $Date$</i>

+ 18 - 18
imagery/i.evapo.mh/i.evapo.mh.html

@@ -1,33 +1,33 @@
 <h2>DESCRIPTION</h2>
 <h2>DESCRIPTION</h2>
 
 
-<em>i.evapo.MH</em> Calculates the reference ET after Hargreaves (1985) and Modified Hargreaves (2001). 
-
-<h2>NOTES</h2>
-Hargreaves GL, Hargreaves GH, Riley JP, 1985. Agricultural benefits for Senegal River Basin. Journal of Irrigation and Drainange Engineering, ASCE, 111(2):113-124.
-
-Droogers P, Allen RG, 2002. Towards a simplified global reference evapotranspiration equation. Irrigation Science.
-Droogers, P., and R.G. Allen. 2002. Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and Drainage Systems 16: 33-45.
-
-Hargreaves and Samani, 1985.
-
-<h2>TODO</h2>
-
+<em>i.evapo.MH</em> Calculates the reference ET after Hargreaves (1985)
+and Modified Hargreaves (2001). 
 
 
 <h2>SEE ALSO</h2>
 <h2>SEE ALSO</h2>
 
 
 <em>
 <em>
-<a href="i.evapo.PT.html">i.evapo.PT</A><br>
-<a href="i.evapo.PM.html">i.evapo.PM</A><br>
-<a href="i.evapo.potrad.html">i.evapo.potrad</A><br>
-<a href="r.sun.html">r.sun</A><br>
-
+<a href="i.evapo.pt.html">i.evapo.pt</a>,
+<a href="i.evapo.pm.html">i.evapo.pm</a>,
+<a href="i.evapo.potrad.html">i.evapo.potrad</a>,
+<a href="r.sun.html">r.sun</a>
 </em>
 </em>
 
 
+<h2>REFERENCES</h2>
+Hargreaves GL, Hargreaves GH, Riley JP, 1985. Agricultural benefits for
+Senegal River Basin. Journal of Irrigation and Drainange Engineering,
+ASCE, 111(2):113-124.
+<p>
+Droogers P, Allen RG, 2002. Towards a simplified global reference
+evapotranspiration equation. Irrigation Science.
+<p>
+Droogers, P., and R.G. Allen. 2002. Estimating reference evapotranspiration
+under inaccurate data conditions. Irrigation and Drainage Systems 16: 33-45.
+<p>
+Hargreaves and Samani, 1985.
 
 
 <h2>AUTHORS</h2>
 <h2>AUTHORS</h2>
 
 
 Yann Chemin, GRASS Development team, 2007-2011<br>
 Yann Chemin, GRASS Development team, 2007-2011<br>
 
 
-
 <p>
 <p>
 <i>Last changed: $Date$</i>
 <i>Last changed: $Date$</i>

+ 20 - 16
imagery/i.evapo.pt/i.evapo.pt.html

@@ -1,36 +1,40 @@
 <h2>DESCRIPTION</h2>
 <h2>DESCRIPTION</h2>
 
 
-<em>i.evapo.PT</em> Calculates the diurnal evapotranspiration after Prestley and Taylor (1972). 
-The Priestley-Taylor model (Priestley and Taylor, 1972) is a modification of Penman’s more theoretical equation.
+<em>i.evapo.PT</em> Calculates the diurnal evapotranspiration after Prestley
+and Taylor (1972). The Priestley-Taylor model (Priestley and Taylor, 1972)
+is a modification of Penman’s more theoretical equation.
 
 
 <h2>NOTES</h2>
 <h2>NOTES</h2>
-RNETD optional output from i.evapo.potrad is giving good results as input for net radiation in this module.
+RNETD optional output from i.evapo.potrad is giving good results as input
+for net radiation in this module.
 
 
+<p>
 Alpha values:
 Alpha values:
-1.32 for estimates from vegetated areas as a result of the increase in surface roughness (Morton, 1983; Brutsaert and Stricker, 1979)
-1.26 is applicable in humid climates (De Bruin and Keijman, 1979; Stewart and Rouse, 1976; Shuttleworth and Calder, 1979), and temperate hardwood swamps (Munro, 1979)
-1.74 has been recommended for estimating potential evapotranspiration in more arid regions (ASCE, 1990). This Worked well in Greece with University of Thessaloniki.
+<ul>
+<li> 1.32 for estimates from vegetated areas as a result of the increase in
+surface roughness (Morton, 1983; Brutsaert and Stricker, 1979)
+<li> 1.26 is applicable in humid climates (De Bruin and Keijman, 1979;
+Stewart and Rouse, 1976; Shuttleworth and Calder, 1979), and temperate
+hardwood swamps (Munro, 1979)
+<li> 1.74 has been recommended for estimating potential evapotranspiration
+in more arid regions (ASCE, 1990). This Worked well in Greece with University of Thessaloniki.
+</ul>
 
 
 Alpha values extracted from:
 Alpha values extracted from:
 http://www.civil.uwaterloo.ca/Watflood/Manual/02_03_1.htm
 http://www.civil.uwaterloo.ca/Watflood/Manual/02_03_1.htm
 
 
-<h2>TODO</h2>
-
-
 <h2>SEE ALSO</h2>
 <h2>SEE ALSO</h2>
 
 
 <em>
 <em>
-<a href="i.evapo.PM.html">i.evapo.PM</A><br>
-<a href="i.evapo.potrad.html">i.evapo.potrad</A><br>
-<a href="i.eb.netrad.html">i.eb.netrad</A><br>
-<a href="i.eb.g0.html">i.eb.g0</A><br>
+<a href="i.evapo.pm.html">i.evapo.pm</a>,
+<a href="i.evapo.potrad.html">i.evapo.potrad</a>,
+<a href="i.eb.netrad.html">i.eb.netrad</a>,
+<a href="i.eb.g0.html">i.eb.g0</a>
 </em>
 </em>
 
 
-
 <h2>AUTHORS</h2>
 <h2>AUTHORS</h2>
 
 
-Yann Chemin, GRASS Development team, 2007-08<br>
-
+Yann Chemin, GRASS Development team, 2007-08
 
 
 <p>
 <p>
 <i>Last changed: $Date$</i>
 <i>Last changed: $Date$</i>

+ 31 - 21
imagery/i.evapo.time/i.evapo.time.html

@@ -1,58 +1,68 @@
 <h2>DESCRIPTION</h2>
 <h2>DESCRIPTION</h2>
 
 
-<em>i.evapo.time_integration</em> integrates ETa in time following a reference ET (typically) from a set of meteorological stations dataset.
+<em>i.evapo.time_integration</em> integrates ETa in time following a
+reference ET (typically) from a set of meteorological stations dataset.
 
 
 Inputs:
 Inputs:
-- ETa images
-- ETa images DOY (Day of Year)
-- ETo images
-- ETo DOYmin as a single value 
+<ul>
+<li> ETa images
+<li> ETa images DOY (Day of Year)
+<li> ETo images
+<li> ETo DOYmin as a single value 
+</ul>
 
 
 Method:
 Method:
-1 - each ETa pixel is divided by the same day ETo and become ETrF
-2 - each ETrF pixel is multiplied by the ETo sum for the representative days
-3 - Sum all n temporal [ETrF*ETo_sum] pixels to make a summed(ET) in [DOYmin;DOYmax]
+<ol>
+<li> each ETa pixel is divided by the same day ETo and become ETrF
+<li> each ETrF pixel is multiplied by the ETo sum for the representative days
+<li> Sum all n temporal [ETrF*ETo_sum] pixels to make a summed(ET) in [DOYmin;DOYmax]
+</ol>
 
 
 representative days calculation:
 representative days calculation:
 let assume i belongs to range [DOYmin;DOYmax]
 let assume i belongs to range [DOYmin;DOYmax]
 
 
+<div class="code"><pre>
 DOYbeforeETa[i] = ( DOYofETa[i] - DOYofETa[i-1] ) / 2
 DOYbeforeETa[i] = ( DOYofETa[i] - DOYofETa[i-1] ) / 2
 DOYafterETa[i] = ( DOYofETa[i+1] - DOYofETa[i] ) / 2
 DOYafterETa[i] = ( DOYofETa[i+1] - DOYofETa[i] ) / 2
-
+</pre></div>
 
 
 <h2>NOTES</h2>
 <h2>NOTES</h2>
 
 
 ETo images preparation:
 ETo images preparation:
 If you only have one meteorological station data, the easiest way is:
 If you only have one meteorological station data, the easiest way is:
 
 
+<div class="code"><pre>
 n=0
 n=0
 for ETo_val in Eto[1] Eto[2] ...
 for ETo_val in Eto[1] Eto[2] ...
 do
 do
 	r.mapcalc "eto$n = $ETo_val" 
 	r.mapcalc "eto$n = $ETo_val" 
 	`expr n = n + 1'
 	`expr n = n + 1'
 done
 done
+</pre></div>
 
 
-with Eto[1], Eto[2], etc being a simple copy and paste from your data file of all ETo values separated by an empty space from each other.
-
-If you have several meteorological stations data, then you need to grid them, Thiessen polygons or interpolation for each day.
+with Eto[1], Eto[2], etc being a simple copy and paste from your data file
+of all ETo values separated by an empty space from each other.
 
 
-For multi-year calculations, just continue incrementing DOY values above 366, it will continue working, up to maximum input of 400 satellite images.
+If you have several meteorological stations data, then you need to grid
+them, Thiessen polygons or interpolation for each day.
 
 
-<h2>TODO</h2>
+For multi-year calculations, just continue incrementing DOY values above
+366, it will continue working, up to maximum input of 400 satellite images.
 
 
 <h2>SEE ALSO</h2>
 <h2>SEE ALSO</h2>
 
 
 <em>
 <em>
-<a href="i.eb.eta.html">i.eb.eta</A><br>
-<a href="i.evapo.potrad.html">i.evapo.potrad</A><br>
-<a href="i.evapo.SENAY.html">i.evapo.SENAY</A><br>
-<a href="r.surf.idw.html">r.surf.idw</A><br>
-<a href="r.surf.idw2.html">r.surf.idw2</A><br>
-<a href="r.bilinear.html">r.bilinear</A><br>
+<a href="i.eb.eta.html">i.eb.eta</a>,
+<a href="i.evapo.potrad.html">i.evapo.potrad</a>,
+<a href="i.evapo.SENAY.html">i.evapo.SENAY</a>,
+<a href="r.surf.idw.html">r.surf.idw</a>,
+<a href="r.surf.idw2.html">r.surf.idw2</a>,
+<a href="r.bilinear.html">r.bilinear</a>
 </em>
 </em>
 
 
 
 
 <h2>AUTHORS</h2>
 <h2>AUTHORS</h2>
-Yann Chemin, International Rice Research Institute, The Philippines<br>
+Yann Chemin, International Rice Research Institute, The Philippines
+
 <p>
 <p>
 <i>Last changed: $Date$</i>
 <i>Last changed: $Date$</i>

+ 3 - 5
imagery/i.latlong/i.latlong.html

@@ -14,15 +14,13 @@ Datum transform is not implemented, the same datum is taken as output.
 <h2>SEE ALSO</h2>
 <h2>SEE ALSO</h2>
 
 
 <em>
 <em>
-<a href="i.evapo.potrad.html">i.evapo.potrad</A><br>
-<a href="r.sun.html">r.sun</A><br>
+<a href="i.evapo.potrad.html">i.evapo.potrad</a>,
+<a href="r.sun.html">r.sun</a>
 </em>
 </em>
 
 
-
 <h2>AUTHORS</h2>
 <h2>AUTHORS</h2>
 
 
-Yann Chemin, International Rice Research Institute, The Philippines.<br>
-
+Yann Chemin, International Rice Research Institute, The Philippines
 
 
 <p>
 <p>
 <i>Last changed: $Date$</i>
 <i>Last changed: $Date$</i>

+ 18 - 17
imagery/i.modis.qc/i.modis.qc.html

@@ -1,6 +1,8 @@
 <h2>DESCRIPTION</h2>
 <h2>DESCRIPTION</h2>
 
 
-<em>i.modis.qc</em> Extracts Requested Quality Assessment flags from the following Modis products: MOD09A1, MOD09Q1, MOD11A1, MOD11A2, MOD13A2, MCD43B2. This does include MOD09A1 QA_state_500m layer (see Notes).
+<em>i.modis.qc</em> Extracts Requested Quality Assessment flags from the
+following MODIS products: MOD09A1, MOD09Q1, MOD11A1, MOD11A2, MOD13A2,
+MCD43B2. This does include MOD09A1 QA_state_500m layer (see Notes).
 
 
 <pre>
 <pre>
 <em>MOD09A1/Q1: MODLAND QA Bits. bits=[0-1]</em>
 <em>MOD09A1/Q1: MODLAND QA Bits. bits=[0-1]</em>
@@ -9,7 +11,8 @@
  <li>[00]= class 0: Corrected product produced at ideal quality -- all bands</li>
  <li>[00]= class 0: Corrected product produced at ideal quality -- all bands</li>
  <li>[01]= class 1: Corrected product produced at less than ideal quality -- some or all bands</li>
  <li>[01]= class 1: Corrected product produced at less than ideal quality -- some or all bands</li>
  <li>[10]= class 2: Corrected product NOT produced due to cloud effect -- all bands</li>
  <li>[10]= class 2: Corrected product NOT produced due to cloud effect -- all bands</li>
- <li>[11]= class 3: Corrected product NOT produced due to other reasons -- some or all bands maybe be fill value (Note that a value of [11] overrides a value of [01])</li>
+ <li>[11]= class 3: Corrected product NOT produced due to other reasons --
+ some or all bands maybe be fill value (Note that a value of [11] overrides a value of [01])</li>
 </ul>
 </ul>
 
 
 <pre>
 <pre>
@@ -391,30 +394,28 @@ bits[0-3][4-7][8-11][12-15][16-19][20-23][24-27]<br>
 
 
 
 
 <h2>NOTES</h2>
 <h2>NOTES</h2>
-In MOD09A1: It seems that cloud related info is not filled properly in the standard QC (MOD09A1 in this module) since version 3, State-QA 500m images (MOD09A1s in this module) should be used (see Vermote et al., 2008).<br>
+In MOD09A1: It seems that cloud related info is not filled properly in the
+standard QC (MOD09A1 in this module) since version 3, State-QA 500m images
+(MOD09A1s in this module) should be used (see Vermote et al., 2008).
 
 
 <h2>TODO</h2>
 <h2>TODO</h2>
-Add one Day products.<br>
+Add one Day products.
 
 
 <h2>SEE ALSO</h2>
 <h2>SEE ALSO</h2>
-<br>
-<a href="https://lpdaac.usgs.gov/lpdaac/products/modis_products_table">MODIS Products</A><br>
-<br>
-Vermote E.F., Kotchenova S.Y., Ray J.P.<br>
-MODIS Surface Reflectance User's Guide.<br>
-Version 1.2. June 2008.<br>
-MODIS Land Surface Reflectance Science Computing Facility.<br>
-<a href="http://modis-sr.ltdri.org">Homepage</A><br>
-
-
 <em>
 <em>
-<a href="i.vi.html">i.vi</A><br>
+<a href="i.vi.html">i.vi</a>
 </em>
 </em>
 
 
+<h2>REFERENCES</h2>
 
 
-<h2>AUTHORS</h2>
-Yann Chemin<br>
+<ul>
+<li> <a href="https://lpdaac.usgs.gov/lpdaac/products/modis_products_table">MODIS Products</a>
+<li> Vermote E.F., Kotchenova S.Y., Ray J.P. MODIS Surface Reflectance User's Guide. 
+ Version 1.2. June 2008. MODIS Land Surface Reflectance Science Computing Facility. <a href="http://modis-sr.ltdri.org">Homepage</a>
+</ul>
 
 
+<h2>AUTHOR</h2>
+Yann Chemin
 
 
 <p>
 <p>
 <i>Last changed: $Date$</i>
 <i>Last changed: $Date$</i>

+ 6 - 9
imagery/i.sunhours/i.sunhours.html

@@ -15,28 +15,25 @@ The latitude input map can be created with the <em>i.latlong</em>
 module, or with <em>r.mapcalc</em>'s <tt>y()</tt> function in a
 module, or with <em>r.mapcalc</em>'s <tt>y()</tt> function in a
 latitude-longitude location (possibly reprojected with <em>r.proj</em>.
 latitude-longitude location (possibly reprojected with <em>r.proj</em>.
 
 
-
-<h2>NOTES</h2>
+<h2>REFERENCES</h2>
 
 
 Iqbal, M., 1983. An Introduction to Solar Radiation. Iqbal, M.,
 Iqbal, M., 1983. An Introduction to Solar Radiation. Iqbal, M.,
  Editorial: Academic Press. Toronto, Canada.
  Editorial: Academic Press. Toronto, Canada.
+<p>
 Parodi, G., 2000. AVHRR Hydrological Analysis System. Algorithms
 Parodi, G., 2000. AVHRR Hydrological Analysis System. Algorithms
  and Theory, Version 1.0. WRES - ITC, The Netherlands.
  and Theory, Version 1.0. WRES - ITC, The Netherlands.
-<h2>TODO</h2>
-
 
 
 <h2>SEE ALSO</h2>
 <h2>SEE ALSO</h2>
 
 
 <em>
 <em>
-<a href="i.evapo.TSA.html">i.evapo.TSA</A><br>
-<a href="i.latitude.html">i.latitude</A><br>
+<a href="i.evapo.TSA.html">i.evapo.TSA</a>,
+<a href="i.latitude.html">i.latitude</a>
 </em>
 </em>
 
 
 
 
-<h2>AUTHORS</h2>
-
-Yann Chemin, GRASS Development Team<br>
+<h2>AUTHOR</h2>
 
 
+Yann Chemin, GRASS Development Team
 
 
 <p>
 <p>
 <i>Last changed: $Date$</i>
 <i>Last changed: $Date$</i>

+ 56 - 46
imagery/i.vi/i.vi.html

@@ -21,8 +21,9 @@ parameters.
   <li>WDVI: Weighted Difference Vegetation Index</li>
   <li>WDVI: Weighted Difference Vegetation Index</li>
 </ul>
 </ul>
 
 
-<pre>
+<div class="code"><pre>
 ARVI: Atmospheric Resistant Vegetation Index 
 ARVI: Atmospheric Resistant Vegetation Index 
+
 ARVI is resistant to atmospheric effects (in comparison to 
 ARVI is resistant to atmospheric effects (in comparison to 
 the NDVI) and is accomplished by a self correcting process 
 the NDVI) and is accomplished by a self correcting process 
 for the atmospheric effect in the red channel, using the 
 for the atmospheric effect in the red channel, using the 
@@ -31,147 +32,156 @@ channels.(Kaufman and Tanre 1996).
 ARVI = (nirchan - (2.0*redchan - bluechan)) / 
 ARVI = (nirchan - (2.0*redchan - bluechan)) / 
 ( nirchan + (2.0*redchan - bluechan))
 ( nirchan + (2.0*redchan - bluechan))
 arvi( redchan, nirchan, bluechan )
 arvi( redchan, nirchan, bluechan )
-</pre>
+</pre></div>
 
 
-<pre>
+<div class="code"><pre>
 DVI: Difference Vegetation Index
 DVI: Difference Vegetation Index
+
 DVI = ( nirchan - redchan )
 DVI = ( nirchan - redchan )
 dvi( redchan, nirchan )
 dvi( redchan, nirchan )
-</pre>
+</pre></div>
 
 
-<pre>
+<div class="code"><pre>
 EVI: Enhanced Vegetation Index
 EVI: Enhanced Vegetation Index
+
 Huete A.R., Liu H.Q., Batchily K., vanLeeuwen W. (1997). 
 Huete A.R., Liu H.Q., Batchily K., vanLeeuwen W. (1997). 
 A comparison of vegetation indices global set of TM images for 
 A comparison of vegetation indices global set of TM images for 
 EOS-MODIS. Remote Sensing of Environment, 59:440-451.
 EOS-MODIS. Remote Sensing of Environment, 59:440-451.
 EVI = 2.5 * ( nirchan - redchan ) / 
 EVI = 2.5 * ( nirchan - redchan ) / 
 ( nirchan + 6.0 * redchan - 7.5 * bluechan + 1.0 )
 ( nirchan + 6.0 * redchan - 7.5 * bluechan + 1.0 )
 evi( bluechan, redchan, nirchan )
 evi( bluechan, redchan, nirchan )
-</pre>
+</pre></div>
 
 
-<pre>
+<div class="code"><pre>
 GARI: green atmospherically resistant vegetation index
 GARI: green atmospherically resistant vegetation index
+
 GARI = ( nirchan - (greenchan-(bluechan - redchan))) / 
 GARI = ( nirchan - (greenchan-(bluechan - redchan))) / 
 ( nirchan- (greenchan-(bluechan - redchan)))
 ( nirchan- (greenchan-(bluechan - redchan)))
 gari( redchan, nirchan, bluechan, greenchan )
 gari( redchan, nirchan, bluechan, greenchan )
-</pre>
+</pre></div>
 
 
-<pre>
+<div class="code"><pre>
 GEMI: Global Environmental Monitoring Index
 GEMI: Global Environmental Monitoring Index
+
 GEMI = (( (2*((nirchan * nirchan)-(redchan * redchan))+
 GEMI = (( (2*((nirchan * nirchan)-(redchan * redchan))+
 1.5*nirchan+0.5*redchan) / (nirchan + redchan + 0.5)) * 
 1.5*nirchan+0.5*redchan) / (nirchan + redchan + 0.5)) * 
 (1 - 0.25 * (2*((nirchan * nirchan)-(redchan * redchan))
 (1 - 0.25 * (2*((nirchan * nirchan)-(redchan * redchan))
 +1.5*nirchan+0.5*redchan) /(nirchan + redchan + 0.5)))-
 +1.5*nirchan+0.5*redchan) /(nirchan + redchan + 0.5)))-
 ( (redchan - 0.125) / (1 - redchan))
 ( (redchan - 0.125) / (1 - redchan))
 gemi( redchan, nirchan )
 gemi( redchan, nirchan )
-</pre>
+</pre></div>
 
 
-<pre>
+<div class="code"><pre>
 GVI: Green Vegetation Index
 GVI: Green Vegetation Index
+
 GVI = ( -0.2848 * bluechan - 0.2435 * greenchan - 
 GVI = ( -0.2848 * bluechan - 0.2435 * greenchan - 
 0.5436 * redchan + 0.7243 * nirchan + 0.0840 * chan5chan-
 0.5436 * redchan + 0.7243 * nirchan + 0.0840 * chan5chan-
 0.1800 * chan7chan)
 0.1800 * chan7chan)
 gvi( bluechan, greenchan, redchan, nirchan, chan5chan, chan7chan)
 gvi( bluechan, greenchan, redchan, nirchan, chan5chan, chan7chan)
-</pre>
+</pre></div>
 
 
-<pre>
+<div class="code"><pre>
 IPVI: Infrared Percentage Vegetation Index 
 IPVI: Infrared Percentage Vegetation Index 
+
 IPVI = nirchan/(nirchan+redchan)
 IPVI = nirchan/(nirchan+redchan)
 ipvi( redchan, nirchan )
 ipvi( redchan, nirchan )
-</pre>
+</pre></div>
 
 
-<pre>
+<div class="code"><pre>
 MSAVI2: second Modified Soil Adjusted Vegetation Index
 MSAVI2: second Modified Soil Adjusted Vegetation Index
+
 MSAVI2 = (1/2)*(2(NIR+1)-sqrt((2*NIR+1)^2-8(NIR-red)))
 MSAVI2 = (1/2)*(2(NIR+1)-sqrt((2*NIR+1)^2-8(NIR-red)))
 msavi2( redchan, nirchan )
 msavi2( redchan, nirchan )
-</pre>
+</pre></div>
 
 
-<pre>
+<div class="code"><pre>
 MSAVI: Modified Soil Adjusted Vegetation Index
 MSAVI: Modified Soil Adjusted Vegetation Index
+
 MSAVI = s(NIR-s*red-a) / (a*NIR+red-a*s+X*(1+s*s))	
 MSAVI = s(NIR-s*red-a) / (a*NIR+red-a*s+X*(1+s*s))	
 where a is the soil line intercept, s is the
 where a is the soil line intercept, s is the
 soil line slope, and X 	is an adjustment factor
 soil line slope, and X 	is an adjustment factor
 which is set to minimize soil noise (0.08 in 
 which is set to minimize soil noise (0.08 in 
 original papers).			
 original papers).			
 msavi( redchan, nirchan )
 msavi( redchan, nirchan )
-</pre>
+</pre></div>
+
+<div class="code"><pre>
+NDVI: Normalized Difference Vegetation Index
 
 
-<pre>
-NDVI: Normalized Difference Vegetation Index 
 Data Type Band Numbers ([IR, Red]) 
 Data Type Band Numbers ([IR, Red]) 
 TM Bands= [4,3] 
 TM Bands= [4,3] 
 MSS Bands = [7, 5] 
 MSS Bands = [7, 5] 
 AVHRR Bands = [2, 1] 
 AVHRR Bands = [2, 1] 
 SPOT XS Bands = [3, 2] 
 SPOT XS Bands = [3, 2] 
 AVIRIS Bands = [51, 29] 
 AVIRIS Bands = [51, 29] 
-
-
 (AVHRR) NDVI = (channel 2 - channel 1) / (channel 2 + channel 1)
 (AVHRR) NDVI = (channel 2 - channel 1) / (channel 2 + channel 1)
-</pre>
+</pre></div>
 
 
-<pre>
+<div class="code"><pre>
 PVI: Perpendicular Vegetation Index
 PVI: Perpendicular Vegetation Index
+
 PVI = sin(a)NIR-cos(a)red 
 PVI = sin(a)NIR-cos(a)red 
 for a isovegetation lines (lines of equal vegetation)
 for a isovegetation lines (lines of equal vegetation)
 would all be parallel to the soil line therefore a=1
 would all be parallel to the soil line therefore a=1
 pvi( redchan, nirchan )
 pvi( redchan, nirchan )
-</pre>
+</pre></div>
 
 
-<pre>
+<div class="code"><pre>
 SAVI: Soil Adjusted Vegetation Index
 SAVI: Soil Adjusted Vegetation Index
+
 SAVI = ((1.0+0.5)*(nirchan - redchan)) / (nirchan + redchan +0.5)
 SAVI = ((1.0+0.5)*(nirchan - redchan)) / (nirchan + redchan +0.5)
 savi( redchan, nirchan )
 savi( redchan, nirchan )
-</pre>
+</pre></div>
 
 
-<pre>
+<div class="code"><pre>
 SR: Simple Vegetation ratio
 SR: Simple Vegetation ratio
+
 SR = (nirchan/redchan)
 SR = (nirchan/redchan)
 sr( redchan, nirchan )
 sr( redchan, nirchan )
-</pre>
+</pre></div>
 
 
-<pre>
+<div class="code"><pre>
 VARI: Visible Atmospherically Resistant Index
 VARI: Visible Atmospherically Resistant Index
+
 VARI = (green - red ) / (green + red - blue)
 VARI = (green - red ) / (green + red - blue)
 it was designed to introduce an atmospheric self-correction 
 it was designed to introduce an atmospheric self-correction 
 Gitelson A.A., Kaufman Y.J., Stark R., Rundquist D., 2002.
 Gitelson A.A., Kaufman Y.J., Stark R., Rundquist D., 2002.
 Novel algorithms for estimation of vegetation fraction 
 Novel algorithms for estimation of vegetation fraction 
 Remote Sensing of Environment (80), pp76-87. 
 Remote Sensing of Environment (80), pp76-87. 
-</pre>
+</pre></div>
 
 
-<pre>
+<div class="code"><pre>
 WDVI: Weighted Difference Vegetation Index
 WDVI: Weighted Difference Vegetation Index
+
 WDVI = nirchan - a * redchan
 WDVI = nirchan - a * redchan
 if(soil_weight_line == None):
 if(soil_weight_line == None):
 a = 1.0 #slope of soil line
 a = 1.0 #slope of soil line
 wdvi( redchan, nirchan, soil_line_weight )
 wdvi( redchan, nirchan, soil_line_weight )
-</pre>
+</pre></div>
 
 
 <h2>NOTES</h2>
 <h2>NOTES</h2>
 
 
-<pre>
 Originally from kepler.gps.caltech.edu
 Originally from kepler.gps.caltech.edu
-A FAQ on Vegetation in Remote Sensing 
-Written by Terrill W. Ray
-	   Div. of Geological and Planetary Sciences
-	   California Institute of Technology
-email: terrill@mars1.gps.caltech.edu
-Snail Mail:  Terrill Ray
-	     Division of Geological and Planetary Sciences
-	     Caltech
-	     Mail Code 170-25
+<p>
+A FAQ on Vegetation in Remote Sensing<br>
+Written by Terrill W. Ray, Div. of Geological and Planetary Sciences,
+California Institute of Technology, email: terrill@mars1.gps.caltech.edu
+<p>
+Snail Mail:  Terrill Ray<br>
+	     Division of Geological and Planetary Sciences<br>
+	     Caltech, Mail Code 170-25<br>
 	     Pasadena, CA  91125
 	     Pasadena, CA  91125
-</pre>
 
 
 <h2>SEE ALSO</h2>
 <h2>SEE ALSO</h2>
 
 
 <em>
 <em>
-  <a href="i.albedo.html">i.albedo</a>
+<a href="i.albedo.html">i.albedo</a>
 </em>
 </em>
 
 
 
 
 <h2>AUTHORS</h2>
 <h2>AUTHORS</h2>
 Baburao Kamble, Asian Institute of Technology, Thailand<br>
 Baburao Kamble, Asian Institute of Technology, Thailand<br>
-Yann Chemin, Asian Institute of Technology, Thailand<br>
+Yann Chemin, Asian Institute of Technology, Thailand
 
 
 <p>
 <p>
 <i>Last changed: $Date$</i>
 <i>Last changed: $Date$</i>