|
@@ -1,34 +1,33 @@
|
|
|
-/****************************************************************************
|
|
|
+/*!
|
|
|
+ * \file rbtree.c
|
|
|
*
|
|
|
- * MODULE: Vector library
|
|
|
- *
|
|
|
- * AUTHOR(S): Markus Metz
|
|
|
+ * \brief binary search tree
|
|
|
*
|
|
|
- * PURPOSE: Lower level functions for reading/writing/manipulating vectors.
|
|
|
+ * Generic balanced binary search tree (Red Black Tree) implementation
|
|
|
*
|
|
|
- * COPYRIGHT: (C) 2009 by the GRASS Development Team
|
|
|
+ * (C) 2009 by the GRASS Development Team
|
|
|
*
|
|
|
- * This program is free software under the GNU General Public
|
|
|
- * License (>=v2). Read the file COPYING that comes with GRASS
|
|
|
- * for details.
|
|
|
+ * This program is free software under the GNU General Public License
|
|
|
+ * (>=v2). Read the file COPYING that comes with GRASS for details.
|
|
|
*
|
|
|
- *****************************************************************************/
|
|
|
+ * \author Original author Julienne Walker 2003, 2008
|
|
|
+ * GRASS implementation Markus Metz, 2009
|
|
|
+ */
|
|
|
|
|
|
/* balanced binary search tree implementation
|
|
|
+ *
|
|
|
* this one is a Red Black Tree, the bare version, no parent pointers, no threads
|
|
|
- * The core code comes from Julienne Walker's tutorials on
|
|
|
- * binary search trees: insert, remove, balance
|
|
|
- * support for any kind of data structures comes from libavl (GPL >= 2)
|
|
|
- *
|
|
|
+ * The core code comes from Julienne Walker's tutorials on binary search trees
|
|
|
+ * original license: public domain
|
|
|
+ * http://eternallyconfuzzled.com/tuts/datastructures/jsw_tut_rbtree.aspx
|
|
|
+ * some ideas come from libavl (GPL >= 2)
|
|
|
* I could have used some off-the-shelf solution, but that's boring
|
|
|
*
|
|
|
- * Red Black Trees are used to maintain a data structure that allows
|
|
|
+ * Red Black Trees are used to maintain a data structure with
|
|
|
* search, insertion and deletion in O(log N) time
|
|
|
- * This is needed for large vectors with many features
|
|
|
*/
|
|
|
|
|
|
#include <assert.h>
|
|
|
-#include <stdio.h>
|
|
|
#include <stdlib.h>
|
|
|
#include <string.h>
|
|
|
#include <grass/gis.h>
|
|
@@ -46,18 +45,19 @@ int is_red(struct RB_NODE *);
|
|
|
|
|
|
|
|
|
/* create new tree and initialize
|
|
|
- * return pointer to new tree or NULL for memory allocation error
|
|
|
+ * returns pointer to new tree, NULL for memory allocation error
|
|
|
*/
|
|
|
-
|
|
|
struct RB_TREE *rbtree_create(rb_compare_fn *compare, size_t rb_datasize)
|
|
|
{
|
|
|
struct RB_TREE *tree = malloc(sizeof(*tree));
|
|
|
|
|
|
if (tree == NULL) {
|
|
|
- G_warning("RB Search Tree: Out of memory!");
|
|
|
+ G_warning("RB tree: Out of memory!");
|
|
|
return NULL;
|
|
|
}
|
|
|
|
|
|
+ assert(compare);
|
|
|
+
|
|
|
tree->datasize = rb_datasize;
|
|
|
tree->rb_compare = compare;
|
|
|
tree->count = 0;
|
|
@@ -67,12 +67,14 @@ struct RB_TREE *rbtree_create(rb_compare_fn *compare, size_t rb_datasize)
|
|
|
}
|
|
|
|
|
|
/* add an item to a tree
|
|
|
- * returns 1 on success, 0 on failure
|
|
|
* non-recursive top-down insertion
|
|
|
* the algorithm does not allow duplicates and also does not warn about a duplicate
|
|
|
+ * returns 1 on success, 0 on failure
|
|
|
*/
|
|
|
int rbtree_insert(struct RB_TREE *tree, void *data)
|
|
|
{
|
|
|
+ assert(tree && data);
|
|
|
+
|
|
|
if (tree->root == NULL) {
|
|
|
/* create a new root node for tree */
|
|
|
tree->root = rbtree_make_node(tree->datasize, data);
|
|
@@ -119,11 +121,13 @@ int rbtree_insert(struct RB_TREE *tree, void *data)
|
|
|
last = dir;
|
|
|
dir = tree->rb_compare(q->data, data);
|
|
|
|
|
|
- /* Stop if found */
|
|
|
- if (dir == 2)
|
|
|
+ /* Stop if found. This check also disallows duplicates in the tree */
|
|
|
+ if (dir == 0)
|
|
|
break;
|
|
|
|
|
|
- /* Update helpers */
|
|
|
+ dir = dir < 0;
|
|
|
+
|
|
|
+ /* Move the helpers down */
|
|
|
if (g != NULL)
|
|
|
t = g;
|
|
|
|
|
@@ -143,17 +147,19 @@ int rbtree_insert(struct RB_TREE *tree, void *data)
|
|
|
return 1;
|
|
|
}
|
|
|
|
|
|
-/* delete an item from a tree
|
|
|
- * returns 1 on successful deletion
|
|
|
+/* remove an item from a tree that matches given data
|
|
|
+ * non-recursive top-down removal
|
|
|
+ * returns 1 on successful removal
|
|
|
* returns 0 if data item was not found
|
|
|
- * non-recursive top-down deletion
|
|
|
*/
|
|
|
int rbtree_remove(struct RB_TREE *tree, const void *data)
|
|
|
{
|
|
|
struct RB_NODE head = {0}; /* False tree root */
|
|
|
struct RB_NODE *q, *p, *g; /* Helpers */
|
|
|
struct RB_NODE *f = NULL; /* Found item */
|
|
|
- int dir = 1, found = 0;
|
|
|
+ int dir = 1, removed = 0;
|
|
|
+
|
|
|
+ assert(tree && data);
|
|
|
|
|
|
if (tree->root == NULL) {
|
|
|
return 0; /* empty tree, nothing to remove */
|
|
@@ -174,10 +180,10 @@ int rbtree_remove(struct RB_TREE *tree, const void *data)
|
|
|
dir = tree->rb_compare(q->data, data);
|
|
|
|
|
|
/* Save found node */
|
|
|
- if (dir == 2) {
|
|
|
+ if (dir == 0)
|
|
|
f = q;
|
|
|
- dir = 0;
|
|
|
- }
|
|
|
+
|
|
|
+ dir = dir < 0;
|
|
|
|
|
|
/* Push the red node down */
|
|
|
if (!is_red(q) && !is_red(q->link[dir])) {
|
|
@@ -214,39 +220,40 @@ int rbtree_remove(struct RB_TREE *tree, const void *data)
|
|
|
|
|
|
/* Replace and remove if found */
|
|
|
if (f != NULL) {
|
|
|
+ free(f->data);
|
|
|
+ f->data = q->data;
|
|
|
p->link[p->link[1] == q] = q->link[q->link[0] == NULL];
|
|
|
- free(q->data);
|
|
|
free(q);
|
|
|
tree->count--;
|
|
|
- found = 1;
|
|
|
+ removed = 1;
|
|
|
}
|
|
|
else
|
|
|
- G_debug(2, "data not found in search tree");
|
|
|
+ G_debug(2, "RB tree: data not found in search tree");
|
|
|
|
|
|
/* Update root and make it black */
|
|
|
tree->root = head.link[1];
|
|
|
if ( tree->root != NULL)
|
|
|
tree->root->red = 0;
|
|
|
|
|
|
- return found;
|
|
|
+ return removed;
|
|
|
}
|
|
|
|
|
|
/* find data item in tree
|
|
|
- * return pointer to data item if found else NULL
|
|
|
+ * returns pointer to data item if found else NULL
|
|
|
*/
|
|
|
void *rbtree_find(struct RB_TREE *tree, const void *data)
|
|
|
{
|
|
|
struct RB_NODE *curr_node = tree->root;
|
|
|
- int dir = 0;
|
|
|
+ int cmp = 0;
|
|
|
|
|
|
assert(tree && data);
|
|
|
|
|
|
while (curr_node != NULL) {
|
|
|
- dir = tree->rb_compare(curr_node->data, data);
|
|
|
- if (dir == 2)
|
|
|
- return curr_node->data;
|
|
|
+ cmp = tree->rb_compare(curr_node->data, data);
|
|
|
+ if (cmp == 0)
|
|
|
+ return curr_node->data; /* found */
|
|
|
else {
|
|
|
- curr_node = curr_node->link[dir];
|
|
|
+ curr_node = curr_node->link[cmp < 0];
|
|
|
}
|
|
|
}
|
|
|
return NULL;
|
|
@@ -254,9 +261,9 @@ void *rbtree_find(struct RB_TREE *tree, const void *data)
|
|
|
|
|
|
/* initialize tree traversal
|
|
|
* (re-)sets trav structure
|
|
|
- * return pointer to trav struct or NULL on memory allocation error
|
|
|
+ * returns 0
|
|
|
*/
|
|
|
-void rbtree_init_trav(struct RB_TRAV *trav, struct RB_TREE *tree)
|
|
|
+int rbtree_init_trav(struct RB_TRAV *trav, struct RB_TREE *tree)
|
|
|
{
|
|
|
int i;
|
|
|
|
|
@@ -268,21 +275,24 @@ void rbtree_init_trav(struct RB_TRAV *trav, struct RB_TREE *tree)
|
|
|
|
|
|
for (i = 0; i < RBTREE_MAX_HEIGHT; i++)
|
|
|
trav->up[i] = NULL;
|
|
|
+
|
|
|
+ return 0;
|
|
|
}
|
|
|
|
|
|
/* traverse the tree in ascending order
|
|
|
* useful to get all items in the tree non-recursively
|
|
|
- * return pointer to data
|
|
|
* struct RB_TRAV *trav needs to be initialized first
|
|
|
+ * returns pointer to data, NULL when finished
|
|
|
*/
|
|
|
void *rbtree_traverse(struct RB_TRAV *trav)
|
|
|
{
|
|
|
assert(trav);
|
|
|
+
|
|
|
if (trav->curr_node == NULL) {
|
|
|
if (trav->first)
|
|
|
- G_warning("empty tree");
|
|
|
+ G_warning("RB tree: empty tree");
|
|
|
else
|
|
|
- G_warning("finished traversing");
|
|
|
+ G_warning("RB tree: finished traversing");
|
|
|
|
|
|
return NULL;
|
|
|
}
|
|
@@ -295,6 +305,53 @@ void *rbtree_traverse(struct RB_TRAV *trav)
|
|
|
return rbtree_next(trav);
|
|
|
}
|
|
|
|
|
|
+/* find start point to traverse the tree in ascending order
|
|
|
+ * useful to get a selection of items in the tree
|
|
|
+ * magnitudes faster than traversing the whole tree
|
|
|
+ * may return first item that's smaller or first item that's larger
|
|
|
+ * struct RB_TRAV *trav needs to be initialized first
|
|
|
+ * returns pointer to data, NULL on error
|
|
|
+ */
|
|
|
+void *rbtree_traverse_start(struct RB_TRAV *trav, const void *data)
|
|
|
+{
|
|
|
+ int dir = 0;
|
|
|
+
|
|
|
+ assert(trav && data);
|
|
|
+
|
|
|
+ if (trav->first == 0) {
|
|
|
+ G_debug(1, "RB tree: trav must be initialised first");
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (trav->curr_node == NULL) {
|
|
|
+ G_warning("RB tree: empty tree");
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ trav->first = 0;
|
|
|
+ trav->top = 0;
|
|
|
+
|
|
|
+ while (trav->curr_node != NULL) {
|
|
|
+ dir = trav->tree->rb_compare(trav->curr_node->data, data);
|
|
|
+ /* exact match, great! */
|
|
|
+ if (dir == 0)
|
|
|
+ return trav->curr_node->data;
|
|
|
+ else {
|
|
|
+ dir = dir < 0;
|
|
|
+ /* end of branch, also reached if
|
|
|
+ * smallest item is larger than search template or
|
|
|
+ * largest item is smaller than search template */
|
|
|
+ if (trav->curr_node->link[dir] == NULL)
|
|
|
+ return trav->curr_node->data;
|
|
|
+
|
|
|
+ trav->up[trav->top++] = trav->curr_node;
|
|
|
+ trav->curr_node = trav->curr_node->link[dir];
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return NULL; /* should not happen */
|
|
|
+}
|
|
|
+
|
|
|
/* two functions needed to fully traverse the tree: initialize and continue
|
|
|
* useful to get all items in the tree non-recursively
|
|
|
* this one here uses a stack
|
|
@@ -303,27 +360,25 @@ void *rbtree_traverse(struct RB_TRAV *trav)
|
|
|
* -> more memory needed for standard operations
|
|
|
*/
|
|
|
|
|
|
-/* start traversing the tree */
|
|
|
+/* start traversing the tree
|
|
|
+ * returns pointer to smallest data item
|
|
|
+ */
|
|
|
void *rbtree_first(struct RB_TRAV *trav)
|
|
|
{
|
|
|
trav->top = 0;
|
|
|
|
|
|
/* get smallest item */
|
|
|
- if (trav->curr_node != NULL) {
|
|
|
- while (trav->curr_node->link[0] != NULL) {
|
|
|
- trav->up[trav->top++] = trav->curr_node;
|
|
|
- trav->curr_node = trav->curr_node->link[0];
|
|
|
- }
|
|
|
+ while (trav->curr_node->link[0] != NULL) {
|
|
|
+ trav->up[trav->top++] = trav->curr_node;
|
|
|
+ trav->curr_node = trav->curr_node->link[0];
|
|
|
}
|
|
|
|
|
|
- if (trav->curr_node != NULL) {
|
|
|
- return trav->curr_node->data; /* return smallest item */
|
|
|
- }
|
|
|
- else
|
|
|
- return NULL; /* empty tree */
|
|
|
+ return trav->curr_node->data; /* return smallest item */
|
|
|
}
|
|
|
|
|
|
-/* continue traversing the tree */
|
|
|
+/* continue traversing the tree in ascending order
|
|
|
+ * returns pointer to data item, NULL when finished
|
|
|
+ */
|
|
|
void *rbtree_next(struct RB_TRAV *trav)
|
|
|
{
|
|
|
if (trav->curr_node->link[1] != NULL) {
|
|
@@ -360,6 +415,7 @@ void *rbtree_next(struct RB_TRAV *trav)
|
|
|
/* destroy the tree */
|
|
|
void rbtree_destroy(struct RB_TREE *tree) {
|
|
|
rbtree_destroy2(tree->root);
|
|
|
+ free(tree);
|
|
|
}
|
|
|
|
|
|
void rbtree_destroy2(struct RB_NODE *root)
|
|
@@ -372,63 +428,7 @@ void rbtree_destroy2(struct RB_NODE *root)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-/*!
|
|
|
- * internal funtions used for Red Black Tree maintenance
|
|
|
- */
|
|
|
-
|
|
|
-/* add a new node to the tree */
|
|
|
-struct RB_NODE *rbtree_make_node(size_t datasize, void *data)
|
|
|
-{
|
|
|
- struct RB_NODE *new_node = malloc(sizeof(*new_node));
|
|
|
-
|
|
|
- if (new_node != NULL) {
|
|
|
- new_node->data = malloc(datasize);
|
|
|
- if (new_node->data == NULL)
|
|
|
- G_fatal_error("RB Search Tree: Out of memory!");
|
|
|
-
|
|
|
- memcpy(new_node->data, data, datasize);
|
|
|
- new_node->red = 1; /* 1 is red, 0 is black */
|
|
|
- new_node->link[0] = NULL;
|
|
|
- new_node->link[1] = NULL;
|
|
|
- }
|
|
|
- else
|
|
|
- G_fatal_error("RB Search Tree: Out of memory!");
|
|
|
-
|
|
|
- return new_node;
|
|
|
-}
|
|
|
-
|
|
|
-/* check for red violation */
|
|
|
-int is_red(struct RB_NODE *root)
|
|
|
-{
|
|
|
- if (root)
|
|
|
- return root->red == 1;
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/* single rotation */
|
|
|
-struct RB_NODE *rbtree_single(struct RB_NODE *root, int dir)
|
|
|
-{
|
|
|
- struct RB_NODE *newroot = root->link[!dir];
|
|
|
-
|
|
|
- root->link[!dir] = newroot->link[dir];
|
|
|
- newroot->link[dir] = root;
|
|
|
-
|
|
|
- root->red = 1;
|
|
|
- newroot->red = 0;
|
|
|
-
|
|
|
- return newroot;
|
|
|
-}
|
|
|
-
|
|
|
-/* double rotation */
|
|
|
-struct RB_NODE *rbtree_double(struct RB_NODE *root, int dir)
|
|
|
-{
|
|
|
- root->link[!dir] = rbtree_single(root->link[!dir], !dir);
|
|
|
- return rbtree_single(root, dir);
|
|
|
-}
|
|
|
-
|
|
|
-/* only used for debugging */
|
|
|
-/* check for errors */
|
|
|
+/* used for debugging: check for errors in tree structure */
|
|
|
int rbtree_debug(struct RB_TREE *tree, struct RB_NODE *root)
|
|
|
{
|
|
|
int lh, rh;
|
|
@@ -438,7 +438,7 @@ int rbtree_debug(struct RB_TREE *tree, struct RB_NODE *root)
|
|
|
else {
|
|
|
struct RB_NODE *ln = root->link[0];
|
|
|
struct RB_NODE *rn = root->link[1];
|
|
|
- int lcmp, rcmp;
|
|
|
+ int lcmp = 0, rcmp = 0;
|
|
|
|
|
|
/* Consecutive red links */
|
|
|
if (is_red(root)) {
|
|
@@ -454,21 +454,15 @@ int rbtree_debug(struct RB_TREE *tree, struct RB_NODE *root)
|
|
|
if (ln) {
|
|
|
lcmp = tree->rb_compare(ln->data, root->data);
|
|
|
}
|
|
|
- else {
|
|
|
- lcmp = 1;
|
|
|
- }
|
|
|
|
|
|
if (rn) {
|
|
|
rcmp = tree->rb_compare(rn->data, root->data);
|
|
|
}
|
|
|
- else {
|
|
|
- rcmp = 1;
|
|
|
- }
|
|
|
-
|
|
|
|
|
|
- /* Invalid binary search tree */
|
|
|
- if ((ln != NULL && (lcmp == 0 || lcmp == 2))
|
|
|
- || (rn != NULL && (rcmp == 1 || rcmp == 2))) {
|
|
|
+ /* Invalid binary search tree:
|
|
|
+ * left node >= parent or right node <= parent */
|
|
|
+ if ((ln != NULL && lcmp > -1)
|
|
|
+ || (rn != NULL && rcmp < 1)) {
|
|
|
G_warning("Red Black Tree debugging: Binary tree violation" );
|
|
|
return 0;
|
|
|
}
|
|
@@ -486,3 +480,59 @@ int rbtree_debug(struct RB_TREE *tree, struct RB_NODE *root)
|
|
|
return 0;
|
|
|
}
|
|
|
}
|
|
|
+
|
|
|
+/*******************************************************
|
|
|
+ * *
|
|
|
+ * internal functions for Red Black Tree maintenance *
|
|
|
+ * *
|
|
|
+ *******************************************************/
|
|
|
+
|
|
|
+/* add a new node to the tree */
|
|
|
+struct RB_NODE *rbtree_make_node(size_t datasize, void *data)
|
|
|
+{
|
|
|
+ struct RB_NODE *new_node = malloc(sizeof(*new_node));
|
|
|
+
|
|
|
+ if (new_node == NULL)
|
|
|
+ G_fatal_error("RB Search Tree: Out of memory!");
|
|
|
+
|
|
|
+ new_node->data = malloc(datasize);
|
|
|
+ if (new_node->data == NULL)
|
|
|
+ G_fatal_error("RB Search Tree: Out of memory!");
|
|
|
+
|
|
|
+ memcpy(new_node->data, data, datasize);
|
|
|
+ new_node->red = 1; /* 1 is red, 0 is black */
|
|
|
+ new_node->link[0] = NULL;
|
|
|
+ new_node->link[1] = NULL;
|
|
|
+
|
|
|
+ return new_node;
|
|
|
+}
|
|
|
+
|
|
|
+/* check for red violation */
|
|
|
+int is_red(struct RB_NODE *root)
|
|
|
+{
|
|
|
+ if (root)
|
|
|
+ return root->red == 1;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/* single rotation */
|
|
|
+struct RB_NODE *rbtree_single(struct RB_NODE *root, int dir)
|
|
|
+{
|
|
|
+ struct RB_NODE *newroot = root->link[!dir];
|
|
|
+
|
|
|
+ root->link[!dir] = newroot->link[dir];
|
|
|
+ newroot->link[dir] = root;
|
|
|
+
|
|
|
+ root->red = 1;
|
|
|
+ newroot->red = 0;
|
|
|
+
|
|
|
+ return newroot;
|
|
|
+}
|
|
|
+
|
|
|
+/* double rotation */
|
|
|
+struct RB_NODE *rbtree_double(struct RB_NODE *root, int dir)
|
|
|
+{
|
|
|
+ root->link[!dir] = rbtree_single(root->link[!dir], !dir);
|
|
|
+ return rbtree_single(root, dir);
|
|
|
+}
|