|
@@ -106,9 +106,8 @@ For the output raster map, a <b>suitable resolution</b> can be found by
|
|
|
dividing the number of input points by the area covered (this requires
|
|
|
an iterative approach as outlined here):
|
|
|
|
|
|
+<!-- points.las is from California -->
|
|
|
<div class="code"><pre>
|
|
|
-# North Carolina (http://grass.osgeo.org/sampledata/north_carolina/points.las)
|
|
|
-
|
|
|
# print LAS metadata (Number of Points)
|
|
|
r.in.lidar -p input=points.las
|
|
|
# Number of Point Records: 1287775
|
|
@@ -192,12 +191,10 @@ map. [In this example the user may want to include a lower bound filter in
|
|
|
|
|
|
<h2>EXAMPLE</h2>
|
|
|
|
|
|
-North Carolina sample dataset: Import of the
|
|
|
-<a href="http://grass.osgeo.org/sampledata/north_carolina/points.las">sample LAS file</a>
|
|
|
-into the existing mapset:
|
|
|
+Import of a LAS file into an existing location/mapset (metric):
|
|
|
|
|
|
<div class="code"><pre>
|
|
|
-# set the computational region automatically, raster resolution for binning is 5m
|
|
|
+# set the computational region automatically, resol. for binning is 5m
|
|
|
r.in.lidar -e -o input=points.las resolution=5 output=lidar_dem_mean
|
|
|
g.region rast=lidar_dem_mean -p
|
|
|
r.univar lidar_dem_mean
|