Pārlūkot izejas kodu

cleanup

git-svn-id: https://svn.osgeo.org/grass/grass/trunk@48368 15284696-431f-4ddb-bdfa-cd5b030d7da7
Markus Neteler 14 gadi atpakaļ
vecāks
revīzija
e9768dc2e2
1 mainītis faili ar 37 papildinājumiem un 39 dzēšanām
  1. 37 39
      raster/r.texture/r.texture.html

+ 37 - 39
raster/r.texture/r.texture.html

@@ -1,6 +1,6 @@
 <h2>DESCRIPTION</h2>
 <h2>DESCRIPTION</h2>
 
 
-<em>r.texture</em> - Creates map raster with textural features for
+<em>r.texture</em> creates raster maps with textural features from a
 user-specified raster map layer. The module calculates textural features 
 user-specified raster map layer. The module calculates textural features 
 based on spatial dependence matrices at 0, 45, 90, and 135 
 based on spatial dependence matrices at 0, 45, 90, and 135 
 degrees for a <em>distance</em> (default = 1).
 degrees for a <em>distance</em> (default = 1).
@@ -11,17 +11,16 @@ The input is rescaled to 0 to 255 if needed.
 In general, several variables constitute texture: differences in grey level values,
 In general, several variables constitute texture: differences in grey level values,
 coarseness as scale of grey level differences, presence or lack of directionality
 coarseness as scale of grey level differences, presence or lack of directionality
 and regular patterns.
 and regular patterns.
-
 <p>
 <p>
 <em>r.texture</em> reads a GRASS raster map as input and calculates textural 
 <em>r.texture</em> reads a GRASS raster map as input and calculates textural 
 features based on spatial
 features based on spatial
 dependence matrices for north-south, east-west, northwest, and southwest
 dependence matrices for north-south, east-west, northwest, and southwest
-directions using a side by side neighborhood (i.e., a distance of 1). Be
-sure to carefully set your resolution (using 
-<a href="g.region.html">g.region</a>) before running this program, or else your
-computer could run out of memory.  Also, make sure that your raster map has
-no more than 255 categories.  The output consists into four images for each
-textural feature, one for every direction.</p>
+directions using a side by side neighborhood (i.e., a distance of 1). The user
+should be sure to carefully set the resolution (using <em>g.region</em>) before
+running this program, or the computer may run out of memory. 
+The output consists into four images for each textural feature, one for every
+direction.
+
 <p>
 <p>
 A commonly used texture model is based on the so-called grey level co-occurrence
 A commonly used texture model is based on the so-called grey level co-occurrence
 matrix. This matrix is a two-dimensional histogram of grey levels
 matrix. This matrix is a two-dimensional histogram of grey levels
@@ -78,16 +77,8 @@ The following are brief explanations of texture measures:
 </ul>
 </ul>
    
    
 <h2>NOTES</h2>
 <h2>NOTES</h2>
-Algorithm taken from:<br>
-
-Haralick, R.M., K. Shanmugam, and I. Dinstein. 1973. Textural features for
-    image classification. <em>IEEE Transactions on Systems, Man, and
-    Cybernetics</em>, SMC-3(6):610-621.
 
 
-<p>The code was taken by permission from <em>pgmtexture</em>, part of
-    PBMPLUS (Copyright 1991, Jef Poskanser and Texas Agricultural Experiment
-    Station, employer for hire of James Darrell McCauley). <br>
-    Man page of <a href="http://netpbm.sourceforge.net/doc/pgmtexture.html">pgmtexture</a></p>
+Importantly, the input raster map cannot have more than 255 categories.
 
 
 <h2>EXAMPLE</h2>
 <h2>EXAMPLE</h2>
 
 
@@ -109,36 +100,43 @@ d.shadedmap drape=ortho_texture_ASM_0 rel=ortho_2001_t792_1m
 This calculates four maps (requested texture at four orientations):
 This calculates four maps (requested texture at four orientations):
 ortho_texture_ASM_0, ortho_texture_ASM_45, ortho_texture_ASM_90, ortho_texture_ASM_135.
 ortho_texture_ASM_0, ortho_texture_ASM_45, ortho_texture_ASM_90, ortho_texture_ASM_135.
 
 
-
 <h2>BUGS</h2>
 <h2>BUGS</h2>
 The program can run incredibly slow for large raster maps.
 The program can run incredibly slow for large raster maps.
 
 
 <h2>REFERENCES</h2>
 <h2>REFERENCES</h2>
-<b>Haralick, R.M., K. Shanmugam, and I. Dinstein</b> (1973). Textural features for
-    image classification. <em>IEEE Transactions on Systems, Man, and
-    Cybernetics</em>, SMC-3(6):610-621.
-<p>
-<b>Bouman, C. A., Shapiro, M.</b>,(March
-    1994).A Multiscale Random Field Model for Bayesian Image
-    Segmentation, IEEE Trans. on Image Processing, vol. 3, no.2.
-<p>
-<b>Haralick, R.</b>, (May 1979). <i>Statistical and structural approaches to texture</i>,
-   Proceedings of the IEEE, vol. 67, No.5, pp. 786-804</p>
+
+The algorithm was implemented after Haralick et al., 1973.
+
 <p>
 <p>
-<b>Hall-Beyer, M.</b> (2007). <a href="http://www.fp.ucalgary.ca/mhallbey/tutorial.htm">The GLCM Tutorial Home Page</a>
+The code was taken by permission from <em>pgmtexture</em>, part of
+PBMPLUS (Copyright 1991, Jef Poskanser and Texas Agricultural Experiment
+Station, employer for hire of James Darrell McCauley). <br>
+Manual page of <a href="http://netpbm.sourceforge.net/doc/pgmtexture.html">pgmtexture</a></p>
+
+<ul> 
+<li>Haralick, R.M., K. Shanmugam, and I. Dinstein (1973). Textural features for
+    image classification. <em>IEEE Transactions on Systems, Man, and
+    Cybernetics</em>, SMC-3(6):610-621.</li>
+<li>Bouman, C. A., Shapiro, M. (1994). A Multiscale Random Field Model for
+ Bayesian Image Segmentation, IEEE Trans. on Image Processing, vol. 3, no. 2.</li>
+<li>Haralick, R. (May 1979). <i>Statistical and structural approaches to texture</i>,
+   Proceedings of the IEEE, vol. 67, No.5, pp. 786-804</li>
+<li>Hall-Beyer, M. (2007). <a href="http://www.fp.ucalgary.ca/mhallbey/tutorial.htm">The GLCM Tutorial Home Page</a>
   (Grey-Level Co-occurrence Matrix texture measurements). University of Calgary, Canada
   (Grey-Level Co-occurrence Matrix texture measurements). University of Calgary, Canada
-     
+</ul>
+
 <h2>SEE ALSO</h2>
 <h2>SEE ALSO</h2>
 
 
-<em><a href="i.smap.html">i.smap</a></em>,
-<em><a href="i.gensigset.html">i.gensigset</a></em>,
-<em><a href="i.pca.html">i.pca</a></em>,
-<em><a href="r.digit.html">r.digit</a></em>,
-<em><a href="i.group.html">i.group</a></em>
+<em>
+<a href="i.smap.html">i.smap</a>,
+<a href="i.gensigset.html">i.gensigset</a>,
+<a href="i.pca.html">i.pca</a>,
+<a href="r.rescale.html">r.rescale</a>
+</em>
 
 
-<h2>AUTHOR</h2>
+<h2>AUTHORS</h2>
 <a href="mailto:antoniol@ieee.org">G. Antoniol</a> - RCOST (Research Centre on Software Technology - Viale Traiano - 82100 Benevento)<br>
 <a href="mailto:antoniol@ieee.org">G. Antoniol</a> - RCOST (Research Centre on Software Technology - Viale Traiano - 82100 Benevento)<br>
-<a href="mailto:basco@unisannio.it">C. Basco</a> -  RCOST (Research Centre on Software Technology - Viale Traiano - 82100 Benevento)<br>
-<a href="mailto:ceccarelli@unisannio.it">M. Ceccarelli</a> - Facolta di Scienze, Universita del Sannio, Benevento
+C. Basco -  RCOST (Research Centre on Software Technology - Viale Traiano - 82100 Benevento)<br>
+M. Ceccarelli - Facolta di Scienze, Universita del Sannio, Benevento
 
 
-<p><i>Last changed: $Date$</i></p>
+<p><i>Last changed: $Date$</i>