/**************************************************************************** * MODULE: R-Tree library * * AUTHOR(S): Antonin Guttman - original code * Daniel Green (green@superliminal.com) - major clean-up * and implementation of bounding spheres * Markus Metz - file-based and memory-based R*-tree * * PURPOSE: Multidimensional index * * COPYRIGHT: (C) 2010 by the GRASS Development Team * * This program is free software under the GNU General Public * License (>=v2). Read the file COPYING that comes with GRASS * for details. *****************************************************************************/ #include #include #include #include #include #include "index.h" #include "card.h" /* * Make a new index, empty. * fp pointer to file holding index, file must be opened as w+ * rootpos postion of rootnode (past any header info) * ndims number of dimensions * returns pointer to RTree structure */ struct RTree *RTreeNewIndex(int fd, off_t rootpos, int ndims) { struct RTree *new_rtree; struct Node *n; int i; new_rtree = (struct RTree *)malloc(sizeof(struct RTree)); new_rtree->fd = fd; new_rtree->rootpos = rootpos; new_rtree->ndims = ndims; new_rtree->nsides = 2 * ndims; new_rtree->rectsize = sizeof(struct Rect); /* init free nodes */ new_rtree->free_nodes.avail = 0; new_rtree->free_nodes.alloc = 0; new_rtree->free_nodes.pos = NULL; new_rtree->nodesize = sizeof(struct Node); new_rtree->branchsize = sizeof(struct Branch); /* create empty root node */ n = RTreeNewNode(new_rtree, 0); new_rtree->rootlevel = n->level = 0; /* leaf */ new_rtree->root = NULL; if (fd > -1) { /* file based */ /* nodecard and leafcard can be adjusted, must NOT be larger than MAXCARD */ new_rtree->nodecard = MAXCARD; new_rtree->leafcard = MAXCARD; /* initialize node buffer */ for (i = 0; i < MAXLEVEL; i++) { new_rtree->nb[i][0].dirty = 0; new_rtree->nb[i][1].dirty = 0; new_rtree->nb[i][0].pos = -1; new_rtree->nb[i][1].pos = -1; new_rtree->mru[i] = 0; } /* write empty root node */ lseek(new_rtree->fd, rootpos, SEEK_SET); RTreeWriteNode(n, new_rtree); new_rtree->nb[0][0].n = *n; new_rtree->nb[0][0].pos = rootpos; new_rtree->mru[0] = 0; RTreeFreeNode(n); new_rtree->insert_rect = RTreeInsertRectF; new_rtree->delete_rect = RTreeDeleteRectF; new_rtree->search_rect = RTreeSearchF; new_rtree->valid_child = RTreeValidChildF; } else { /* memory based */ new_rtree->nodecard = MAXCARD; new_rtree->leafcard = MAXCARD; new_rtree->insert_rect = RTreeInsertRectM; new_rtree->delete_rect = RTreeDeleteRectM; new_rtree->search_rect = RTreeSearchM; new_rtree->valid_child = RTreeValidChildM; new_rtree->root = n; } /* minimum number of remaining children for RTreeDeleteRect */ /* NOTE: min fill can be changed if needed, must be < nodecard and leafcard. */ new_rtree->min_node_fill = (new_rtree->nodecard - 2) / 2; new_rtree->min_leaf_fill = (new_rtree->leafcard - 2) / 2; /* balance criteria for node splitting */ new_rtree->minfill_node_split = (new_rtree->nodecard - 1) / 2; new_rtree->minfill_leaf_split = (new_rtree->leafcard - 1) / 2; new_rtree->n_nodes = 1; new_rtree->n_leafs = 0; return new_rtree; } void RTreeFreeIndex(struct RTree *t) { assert(t); if (t->fd > -1) { if (t->free_nodes.alloc) free(t->free_nodes.pos); } else if (t->root) RTreeDestroyNode(t->root, t->root->level ? t->nodecard : t->leafcard); free(t); } /* * Search in an index tree for all data retangles that * overlap the argument rectangle. * Return the number of qualifying data rects. */ int RTreeSearch(struct RTree *t, struct Rect *r, SearchHitCallback *shcb, void *cbarg) { assert(r && t); return t->search_rect(t, r, shcb, cbarg); } /* * Insert a data rectangle into an RTree index structure. * r pointer to rectangle * tid data id stored with rectangle, must be > 0 * t RTree where rectangle should be inserted */ int RTreeInsertRect(struct Rect *r, int tid, struct RTree *t) { union Child newchild; assert(r && t && tid > 0); t->n_leafs++; newchild.id = tid; return t->insert_rect(r, newchild, 0, t); } /* * Delete a data rectangle from an index structure. * Pass in a pointer to a Rect, the tid of the record, ptr RTree. * Returns 1 if record not found, 0 if success. * RTreeDeleteRect1 provides for eliminating the root. * * RTreeDeleteRect() should be called by external functions instead of * RTreeDeleteRect1() * wrapper for RTreeDeleteRect1 not really needed, but restricts * compile warnings to rtree lib * this way it's easier to fix if necessary? */ int RTreeDeleteRect(struct Rect *r, int tid, struct RTree *t) { union Child child; assert(r && t && tid > 0); child.id = tid; return t->delete_rect(r, child, t); } /* * Allocate space for a node in the list used in DeleteRect to * store Nodes that are too empty. */ struct ListNode *RTreeNewListNode(void) { return (struct ListNode *)malloc(sizeof(struct ListNode)); } void RTreeFreeListNode(struct ListNode *p) { free(p); } /* * Add a node to the reinsertion list. All its branches will later * be reinserted into the index structure. */ void RTreeReInsertNode(struct Node *n, struct ListNode **ee) { struct ListNode *l = RTreeNewListNode(); l->node = n; l->next = *ee; *ee = l; } /* * Free ListBranch */ void RTreeFreeListBranch(struct ListBranch *p) { free(p); }