/**************************************************************************** * MODULE: R-Tree library * * AUTHOR(S): Antonin Guttman - original code * Daniel Green (green@superliminal.com) - major clean-up * and implementation of bounding spheres * Markus Metz - file-based and memory-based R*-tree * * PURPOSE: Multidimensional index * * COPYRIGHT: (C) 2010 by the GRASS Development Team * * This program is free software under the GNU General Public * License (>=v2). Read the file COPYING that comes with GRASS * for details. *****************************************************************************/ #include #include #include #include #include #include "index.h" //#include "card.h" /* * Make a new index, empty. * fp pointer to file holding index, file must be opened as w+ * rootpos postion of rootnode (past any header info) * ndims number of dimensions * returns pointer to RTree structure */ struct RTree *RTreeNewIndex(int fd, off_t rootpos, int ndims) { struct RTree *new_rtree; struct RTree_Node *n; int i, j; new_rtree = (struct RTree *)malloc(sizeof(struct RTree)); new_rtree->fd = fd; new_rtree->rootpos = rootpos; new_rtree->ndims = ndims; new_rtree->nsides = 2 * ndims; /* hack to keep compatibility */ if (ndims < 3) new_rtree->ndims_alloc = 3; else new_rtree->ndims_alloc = ndims; new_rtree->nsides_alloc = 2 * new_rtree->ndims_alloc; /* init free nodes */ new_rtree->free_nodes.avail = 0; new_rtree->free_nodes.alloc = 0; new_rtree->free_nodes.pos = NULL; new_rtree->rectsize = new_rtree->nsides_alloc * sizeof(RectReal); new_rtree->nodesize = sizeof(struct RTree_Node) - MAXCARD * sizeof(RectReal *) + MAXCARD * new_rtree->rectsize; new_rtree->branchsize = sizeof(struct RTree_Branch) - sizeof(RectReal *) + new_rtree->rectsize; /* create empty root node */ n = RTreeNewNode(new_rtree, 0); new_rtree->rootlevel = n->level = 0; /* leaf */ new_rtree->root = NULL; if (fd > -1) { /* file based */ /* nodecard and leafcard can be adjusted, must NOT be larger than MAXCARD */ new_rtree->nodecard = MAXCARD; new_rtree->leafcard = MAXCARD; /* initialize node buffer */ for (i = 0; i < MAXLEVEL; i++) { new_rtree->nb[i][0].dirty = 0; new_rtree->nb[i][1].dirty = 0; new_rtree->nb[i][2].dirty = 0; new_rtree->nb[i][0].pos = -1; new_rtree->nb[i][1].pos = -1; new_rtree->nb[i][2].pos = -1; /* usage order */ new_rtree->used[i][0] = 2; new_rtree->used[i][1] = 1; new_rtree->used[i][2] = 0; /* alloc memory for rectangles */ for (j = 0; j < MAXCARD; j++) { RTreeNewRect(&(new_rtree->nb[i][0].n.branch[j].rect), new_rtree); RTreeNewRect(&(new_rtree->nb[i][1].n.branch[j].rect), new_rtree); RTreeNewRect(&(new_rtree->nb[i][2].n.branch[j].rect), new_rtree); RTreeNewRect(&(new_rtree->fs[i].sn.branch[j].rect), new_rtree); } } /* write empty root node */ lseek(new_rtree->fd, rootpos, SEEK_SET); RTreeWriteNode(n, new_rtree); new_rtree->nb[0][0].n = *n; new_rtree->nb[0][0].pos = rootpos; new_rtree->used[0][0] = 0; new_rtree->used[0][2] = 2; RTreeFreeNode(n); new_rtree->insert_rect = RTreeInsertRectF; new_rtree->delete_rect = RTreeDeleteRectF; new_rtree->search_rect = RTreeSearchF; new_rtree->valid_child = RTreeValidChildF; } else { /* memory based */ new_rtree->nodecard = MAXCARD; new_rtree->leafcard = MAXCARD; new_rtree->insert_rect = RTreeInsertRectM; new_rtree->delete_rect = RTreeDeleteRectM; new_rtree->search_rect = RTreeSearchM; new_rtree->valid_child = RTreeValidChildM; new_rtree->root = n; } /* minimum number of remaining children for RTreeDeleteRect */ /* NOTE: min fill can be changed if needed, must be < nodecard and leafcard. */ new_rtree->min_node_fill = (new_rtree->nodecard - 2) / 2; new_rtree->min_leaf_fill = (new_rtree->leafcard - 2) / 2; /* balance criteria for node splitting */ new_rtree->minfill_node_split = (new_rtree->nodecard - 1) / 2; new_rtree->minfill_leaf_split = (new_rtree->leafcard - 1) / 2; new_rtree->n_nodes = 1; new_rtree->n_leafs = 0; /* initialize temp variables */ RTreeNewRect(&(new_rtree->p.cover[0]), new_rtree); RTreeNewRect(&(new_rtree->p.cover[1]), new_rtree); RTreeNewRect(&(new_rtree->tmpb1.rect), new_rtree); RTreeNewRect(&(new_rtree->tmpb2.rect), new_rtree); RTreeNewRect(&(new_rtree->c.rect), new_rtree); for (i = 0; i <= MAXCARD; i++) { RTreeNewRect(&(new_rtree->BranchBuf[i].rect), new_rtree); } RTreeNewRect(&(new_rtree->rect_0), new_rtree); RTreeNewRect(&(new_rtree->rect_1), new_rtree); RTreeNewRect(&(new_rtree->upperrect), new_rtree); RTreeNewRect(&(new_rtree->orect), new_rtree); new_rtree->center_n = (RectReal *)malloc(new_rtree->ndims_alloc * sizeof(RectReal)); return new_rtree; } void RTreeFreeIndex(struct RTree *t) { int i, j; assert(t); if (t->fd > -1) { if (t->free_nodes.alloc) free(t->free_nodes.pos); } else if (t->root) RTreeDestroyNode(t->root, t->root->level ? t->nodecard : t->leafcard); if (t->fd > -1) { /* file based */ /* free node buffer */ for (i = 0; i < MAXLEVEL; i++) { /* free memory for rectangles */ for (j = 0; j < MAXCARD; j++) { free(t->nb[i][0].n.branch[j].rect.boundary); free(t->nb[i][1].n.branch[j].rect.boundary); free(t->nb[i][2].n.branch[j].rect.boundary); free(t->fs[i].sn.branch[j].rect.boundary); } } } /* free temp variables */ free(t->p.cover[0].boundary); free(t->p.cover[1].boundary); free(t->tmpb1.rect.boundary); free(t->tmpb2.rect.boundary); free(t->c.rect.boundary); for (i = 0; i <= MAXCARD; i++) { free(t->BranchBuf[i].rect.boundary); } free(t->rect_0.boundary); free(t->rect_1.boundary); free(t->upperrect.boundary); free(t->orect.boundary); free(t->center_n); free(t); return; } /* * Search in an index tree for all data retangles that * overlap or touch the argument rectangle. * Return the number of qualifying data rects. * * add option to select operator to select rectangles ? * current: overlap * possible alternatives: * - select all rectangles that are fully contained in r * - select all rectangles that fully contain r */ int RTreeSearch(struct RTree *t, struct RTree_Rect *r, SearchHitCallback *shcb, void *cbarg) { assert(r && t); return t->search_rect(t, r, shcb, cbarg); } /* * Insert a data rectangle into an RTree index structure. * r pointer to rectangle * tid data id stored with rectangle, must be > 0 * t RTree where rectangle should be inserted */ int RTreeInsertRect(struct RTree_Rect *r, int tid, struct RTree *t) { union RTree_Child newchild; assert(r && t && tid > 0); t->n_leafs++; newchild.id = tid; return t->insert_rect(r, newchild, 0, t); } /* * Delete a data rectangle from an index structure. * Pass in a pointer to a Rect, the tid of the record, ptr RTree. * Returns 1 if record not found, 0 if success. * RTreeDeleteRect1 provides for eliminating the root. * * RTreeDeleteRect() should be called by external functions instead of * RTreeDeleteRect1() * wrapper for RTreeDeleteRect1 not really needed, but restricts * compile warnings to rtree lib * this way it's easier to fix if necessary? */ int RTreeDeleteRect(struct RTree_Rect *r, int tid, struct RTree *t) { union RTree_Child child; assert(r && t && tid > 0); child.id = tid; return t->delete_rect(r, child, t); } /* * Allocate space for a node in the list used in DeleteRect to * store Nodes that are too empty. */ struct RTree_ListNode *RTreeNewListNode(void) { return (struct RTree_ListNode *)malloc(sizeof(struct RTree_ListNode)); } void RTreeFreeListNode(struct RTree_ListNode *p) { free(p); } /* * Add a node to the reinsertion list. All its branches will later * be reinserted into the index structure. */ void RTreeReInsertNode(struct RTree_Node *n, struct RTree_ListNode **ee) { struct RTree_ListNode *l = RTreeNewListNode(); l->node = n; l->next = *ee; *ee = l; } /* * Free ListBranch */ void RTreeFreeListBranch(struct RTree_ListBranch *p) { free(p->b.rect.boundary); free(p); }