/**************************************************************************** * * MODULE: r.stats.zonal * * AUTHOR(S): Glynn Clements; loosely based upon r.statistics, by * Martin Schroeder, Geographisches Institut Heidelberg, Germany * * PURPOSE: Category or object oriented statistics * * COPYRIGHT: (C) 2007,2008 Martin Schroeder, Glynn Clements * and the GRASS Development Team * * This program is free software under the GNU General Public * License (>=v2). Read the file COPYING that comes with GRASS * for details. * *****************************************************************************/ #include #include #include #include #include #include #include #define COUNT 1 /* Count */ #define SUM 2 /* Sum */ #define MIN 3 /* Minimum */ #define MAX 4 /* Maximum */ #define RANGE 5 /* Range */ #define AVERAGE 6 /* Average (mean) */ #define ADEV 7 /* Average deviation */ #define VARIANCE1 8 /* Variance */ #define STDDEV1 9 /* Standard deviation */ #define SKEWNESS1 10 /* Skewness */ #define KURTOSIS1 11 /* Kurtosis */ #define VARIANCE2 12 /* Variance */ #define STDDEV2 13 /* Standard deviation */ #define SKEWNESS2 14 /* Skewness */ #define KURTOSIS2 15 /* Kurtosis */ struct menu { const char *name; /* method name */ int val; /* number of function */ const char *text; /* menu display - full description */ }; extern struct menu menu[]; /* modify this table to add new methods */ struct menu menu[] = { {"count", COUNT, "Count of values in specified objects"}, {"sum", SUM, "Sum of values in specified objects"}, {"min", MIN, "Minimum of values in specified objects"}, {"max", MAX, "Maximum of values in specified objects"}, {"range", RANGE, "Range of values (max - min) in specified objects"}, {"average", AVERAGE, "Average of values in specified objects"}, {"avedev", ADEV, "Average deviation of values in specified objects"}, {"variance", VARIANCE1, "Variance of values in specified objects"}, {"stddev", STDDEV1, "Standard deviation of values in specified objects"}, {"skewness", SKEWNESS1, "Skewness of values in specified objects"}, {"kurtosis", KURTOSIS1, "Kurtosis of values in specified objects"}, {"variance2", VARIANCE2, "(2-pass) Variance of values in specified objects"}, {"stddev2", STDDEV2, "(2-pass) Standard deviation of values in specified objects"}, {"skewness2", SKEWNESS2, "(2-pass) Skewness of values in specified objects"}, {"kurtosis2", KURTOSIS2, "(2-pass) Kurtosis of values in specified objects"}, {0, 0, 0} }; int main(int argc, char **argv) { static DCELL *count, *sum, *mean, *sumu, *sum2, *sum3, *sum4, *min, *max; DCELL *result; struct GModule *module; struct { struct Option *method, *basemap, *covermap, *output; } opt; struct { struct Flag *c, *r; } flag; char methods[2048]; const char *basemap, *covermap, *output; int usecats; int reclass; int base_fd, cover_fd; struct Categories cats; CELL *base_buf; DCELL *cover_buf; struct Range range; CELL mincat, ncats; int method; int rows, cols; int row, col, i; G_gisinit(argv[0]); module = G_define_module(); G_add_keyword(_("raster")); G_add_keyword(_("statistics")); G_add_keyword(_("zonal statistics")); module->description = _("Calculates category or object oriented statistics (accumulator-based statistics)."); opt.basemap = G_define_standard_option(G_OPT_R_BASE); opt.covermap = G_define_standard_option(G_OPT_R_COVER); opt.method = G_define_option(); opt.method->key = "method"; opt.method->type = TYPE_STRING; opt.method->required = YES; opt.method->description = _("Method of object-based statistic"); for (i = 0; menu[i].name; i++) { if (i) strcat(methods, ","); else *(methods) = 0; strcat(methods, menu[i].name); } opt.method->options = G_store(methods); for (i = 0; menu[i].name; i++) { if (i) strcat(methods, ";"); else *(methods) = 0; strcat(methods, menu[i].name); strcat(methods, ";"); strcat(methods, menu[i].text); } opt.method->descriptions = G_store(methods); opt.output = G_define_standard_option(G_OPT_R_OUTPUT); opt.output->description = _("Resultant raster map"); opt.output->required = YES; flag.c = G_define_flag(); flag.c->key = 'c'; flag.c->description = _("Cover values extracted from the category labels of the cover map"); flag.r = G_define_flag(); flag.r->key = 'r'; flag.r->description = _("Create reclass map with statistics as category labels"); if (G_parser(argc, argv)) exit(EXIT_FAILURE); basemap = opt.basemap->answer; covermap = opt.covermap->answer; output = opt.output->answer; usecats = flag.c->answer; reclass = flag.r->answer; for (i = 0; menu[i].name; i++) if (strcmp(menu[i].name, opt.method->answer) == 0) break; if (!menu[i].name) { G_warning(_("<%s=%s> unknown %s"), opt.method->key, opt.method->answer, opt.method->key); G_usage(); exit(EXIT_FAILURE); } method = menu[i].val; base_fd = Rast_open_old(basemap, ""); cover_fd = Rast_open_old(covermap, ""); if (usecats && Rast_read_cats(covermap, "", &cats) < 0) G_fatal_error(_("Unable to read category file of cover map <%s>"), covermap); if (Rast_map_is_fp(basemap, "") != 0) G_fatal_error(_("The base map must be an integer (CELL) map")); if (Rast_read_range(basemap, "", &range) < 0) G_fatal_error(_("Unable to read range of base map <%s>"), basemap); mincat = range.min; ncats = range.max - range.min + 1; rows = Rast_window_rows(); cols = Rast_window_cols(); switch (method) { case COUNT: count = G_calloc(ncats, sizeof(DCELL)); break; case SUM: sum = G_calloc(ncats, sizeof(DCELL)); break; case MIN: min = G_malloc(ncats * sizeof(DCELL)); break; case MAX: max = G_malloc(ncats * sizeof(DCELL)); break; case RANGE: min = G_malloc(ncats * sizeof(DCELL)); max = G_malloc(ncats * sizeof(DCELL)); break; case AVERAGE: case ADEV: case VARIANCE2: case STDDEV2: case SKEWNESS2: case KURTOSIS2: count = G_calloc(ncats, sizeof(DCELL)); sum = G_calloc(ncats, sizeof(DCELL)); break; case VARIANCE1: case STDDEV1: count = G_calloc(ncats, sizeof(DCELL)); sum = G_calloc(ncats, sizeof(DCELL)); sum2 = G_calloc(ncats, sizeof(DCELL)); break; case SKEWNESS1: count = G_calloc(ncats, sizeof(DCELL)); sum = G_calloc(ncats, sizeof(DCELL)); sum2 = G_calloc(ncats, sizeof(DCELL)); sum3 = G_calloc(ncats, sizeof(DCELL)); break; case KURTOSIS1: count = G_calloc(ncats, sizeof(DCELL)); sum = G_calloc(ncats, sizeof(DCELL)); sum2 = G_calloc(ncats, sizeof(DCELL)); sum4 = G_calloc(ncats, sizeof(DCELL)); break; } if (min) for (i = 0; i < ncats; i++) min[i] = 1e300; if (max) for (i = 0; i < ncats; i++) max[i] = -1e300; base_buf = Rast_allocate_c_buf(); cover_buf = Rast_allocate_d_buf(); G_message(_("First pass")); for (row = 0; row < rows; row++) { Rast_get_c_row(base_fd, base_buf, row); Rast_get_d_row(cover_fd, cover_buf, row); for (col = 0; col < cols; col++) { int n; DCELL v; if (Rast_is_c_null_value(&base_buf[col])) continue; if (Rast_is_d_null_value(&cover_buf[col])) continue; n = base_buf[col] - mincat; if (n < 0 || n >= ncats) continue; v = cover_buf[col]; if (usecats) sscanf(Rast_get_c_cat((CELL *) &v, &cats), "%lf", &v); if (count) count[n]++; if (sum) sum[n] += v; if (sum2) sum2[n] += v * v; if (sum3) sum3[n] += v * v * v; if (sum4) sum4[n] += v * v * v * v; if (min && min[n] > v) min[n] = v; if (max && max[n] < v) max[n] = v; } G_percent(row, rows, 2); } G_percent(row, rows, 2); result = G_calloc(ncats, sizeof(DCELL)); switch (method) { case ADEV: case VARIANCE2: case STDDEV2: case SKEWNESS2: case KURTOSIS2: mean = G_calloc(ncats, sizeof(DCELL)); for (i = 0; i < ncats; i++) mean[i] = sum[i] / count[i]; G_free(sum); break; } switch (method) { case ADEV: sumu = G_calloc(ncats, sizeof(DCELL)); break; case VARIANCE2: case STDDEV2: sum2 = G_calloc(ncats, sizeof(DCELL)); break; case SKEWNESS2: sum2 = G_calloc(ncats, sizeof(DCELL)); sum3 = G_calloc(ncats, sizeof(DCELL)); break; case KURTOSIS2: sum2 = G_calloc(ncats, sizeof(DCELL)); sum4 = G_calloc(ncats, sizeof(DCELL)); break; } if (mean) { G_message(_("Second pass")); for (row = 0; row < rows; row++) { Rast_get_c_row(base_fd, base_buf, row); Rast_get_d_row(cover_fd, cover_buf, row); for (col = 0; col < cols; col++) { int n; DCELL v, d; if (Rast_is_c_null_value(&base_buf[col])) continue; if (Rast_is_d_null_value(&cover_buf[col])) continue; n = base_buf[col] - mincat; if (n < 0 || n >= ncats) continue; v = cover_buf[col]; if (usecats) sscanf(Rast_get_c_cat((CELL *) &v, &cats), "%lf", &v); d = v - mean[n]; if (sumu) sumu[n] += fabs(d); if (sum2) sum2[n] += d * d; if (sum3) sum3[n] += d * d * d; if (sum4) sum4[n] += d * d * d * d; } G_percent(row, rows, 2); } G_percent(row, rows, 2); G_free(mean); G_free(cover_buf); } switch (method) { case COUNT: for (i = 0; i < ncats; i++) result[i] = count[i]; break; case SUM: for (i = 0; i < ncats; i++) result[i] = sum[i]; break; case AVERAGE: for (i = 0; i < ncats; i++) result[i] = sum[i] / count[i]; break; case MIN: for (i = 0; i < ncats; i++) result[i] = min[i]; break; case MAX: for (i = 0; i < ncats; i++) result[i] = max[i]; break; case RANGE: for (i = 0; i < ncats; i++) result[i] = max[i] - min[i]; break; case VARIANCE1: for (i = 0; i < ncats; i++) { double n = count[i]; double var = (sum2[i] - sum[i] * sum[i] / n) / (n - 1); result[i] = var; } break; case STDDEV1: for (i = 0; i < ncats; i++) { double n = count[i]; double var = (sum2[i] - sum[i] * sum[i] / n) / (n - 1); result[i] = sqrt(var); } break; case SKEWNESS1: for (i = 0; i < ncats; i++) { double n = count[i]; double var = (sum2[i] - sum[i] * sum[i] / n) / (n - 1); double skew = (sum3[i] / n - 3 * sum[i] * sum2[i] / (n * n) + 2 * sum[i] * sum[i] * sum[i] / (n * n * n)) / (pow(var, 1.5)); result[i] = skew; } break; case KURTOSIS1: for (i = 0; i < ncats; i++) { double n = count[i]; double var = (sum2[i] - sum[i] * sum[i] / n) / (n - 1); double kurt = (sum4[i] / n - 4 * sum[i] * sum3[i] / (n * n) + 6 * sum[i] * sum[i] * sum2[i] / (n * n * n) - 3 * sum[i] * sum[i] * sum[i] * sum[i] / (n * n * n * n)) / (var * var) - 3; result[i] = kurt; } break; case ADEV: for (i = 0; i < ncats; i++) result[i] = sumu[i] / count[i]; break; case VARIANCE2: for (i = 0; i < ncats; i++) result[i] = sum2[i] / (count[i] - 1); break; case STDDEV2: for (i = 0; i < ncats; i++) result[i] = sqrt(sum2[i] / (count[i] - 1)); break; case SKEWNESS2: for (i = 0; i < ncats; i++) { double n = count[i]; double var = sum2[i] / (n - 1); double sdev = sqrt(var); result[i] = sum3[i] / (sdev * sdev * sdev) / n; } G_free(count); G_free(sum2); G_free(sum3); break; case KURTOSIS2: for (i = 0; i < ncats; i++) { double n = count[i]; double var = sum2[i] / (n - 1); result[i] = sum4[i] / (var * var) / n - 3; } G_free(count); G_free(sum2); G_free(sum4); break; } if (reclass) { const char *tempfile = G_tempfile(); char *input_arg = G_malloc(strlen(basemap) + 7); char *output_arg = G_malloc(strlen(output) + 8); char *rules_arg = G_malloc(strlen(tempfile) + 7); FILE *fp; G_message(_("Generating reclass map")); sprintf(input_arg, "input=%s", basemap); sprintf(output_arg, "output=%s", output); sprintf(rules_arg, "rules=%s", tempfile); fp = fopen(tempfile, "w"); if (!fp) G_fatal_error(_("Unable to open temporary file")); for (i = 0; i < ncats; i++) fprintf(fp, "%d = %d %f\n", mincat + i, mincat + i, result[i]); fclose(fp); G_spawn("r.reclass", "r.reclass", input_arg, output_arg, rules_arg, NULL); } else { int out_fd; DCELL *out_buf; struct Colors colors; G_message(_("Writing output map")); out_fd = Rast_open_fp_new(output); out_buf = Rast_allocate_d_buf(); for (row = 0; row < rows; row++) { Rast_get_c_row(base_fd, base_buf, row); for (col = 0; col < cols; col++) if (Rast_is_c_null_value(&base_buf[col])) Rast_set_d_null_value(&out_buf[col], 1); else out_buf[col] = result[base_buf[col] - mincat]; Rast_put_d_row(out_fd, out_buf); G_percent(row, rows, 2); } G_percent(row, rows, 2); Rast_close(out_fd); if (Rast_read_colors(covermap, "", &colors) > 0) Rast_write_colors(output, G_mapset(), &colors); } return 0; }