/** * \file transform.c * * \brief This file contains routines which perform (affine?) * transformations from one coordinate system into another. * * The second system may be translated, stretched, and rotated relative * to the first. The input system is system a and the output * system is b. * * This program is free software under the GNU General Public License * (>=v2). Read the file COPYING that comes with GRASS for details. * * \author GRASS GIS Development Team * * \date 1987-2007 */ /**************************************************************** note: uses sqrt() from math library ***************************************************************** Points from one system may be converted into the second by use of one of the two equation routines. transform_a_into_b (ax,ay,bx,by) double ax,ay; input point from system a double *bx,*by; resultant point in system b transform_b_into_a (bx,by,ax,ay) double bx,by; input point from system b double *ax,*ay; resultant point in system a ***************************************************************** Residual analysis on the equation can be run to test how well the equations work. Either test how well b is predicted by a or vice versa. residuals_a_predicts_b (ax,ay,bx,by,use,n,residuals,rms) residuals_b_predicts_a (ax,ay,bx,by,use,n,residuals,rms) double ax[], ay[]; coordinate from system a double bx[], by[]; coordinate from system b char use[]; use point flags int n; number of points in ax,ay,bx,by double residual[] residual error for each point double *rms; overall root mean square error ****************************************************************/ #include #include #include /* the coefficients */ static double A0, A1, A2, A3, A4, A5; static double B0, B1, B2, B3, B4, B5; /* function prototypes */ static int resid(double *, double *, double *, double *, int *, int, double *, double *, int); /** * \fn int compute_transformation_coef (double ax[], double ay[], double bx[], double by[], char *use, int n) * * \brief The first step is to compute coefficients for a set of equations * which are then used to convert from the one system to the other. * * A set of x,y points from both systems is input into the equation * generator which determines the equation coefficients which most * nearly represent the original points. These coefficients are kept * in a static variables internal to this file. * * NOTE: use[i] must be true for ax[i],ay[i],bx[i],by[i] to be used * in the equation. Also, the total number of used points must be * 4 or larger. * * \param[in] ax coordinate from system a * \param[in] ay coordinate from system a * \param[in] bx coordinate from system b * \param[in] by coordinate from system b * \param[in] use use point flags * \param[in] n number of points in ax, ay, bx, by * \return int 1 if successful * \return int -1 if could not solve equation. Points probably colinear. * \return int -2 if less than 4 points used */ int compute_transformation_coef(double ax[], double ay[], double bx[], double by[], int *use, int n) { int i; int j; int count; double aa[3]; double aar[3]; double bb[3]; double bbr[3]; double cc[3][3]; double x; count = 0; for (i = 0; i < n; i++) if (use[i]) count++; if (count < 4) return -2; /* must have at least 4 points */ for (i = 0; i < 3; i++) { aa[i] = bb[i] = 0.0; for (j = 0; j < 3; j++) cc[i][j] = 0.0; } for (i = 0; i < n; i++) { if (!use[i]) continue; /* skip this point */ cc[0][0] += 1; cc[0][1] += bx[i]; cc[0][2] += by[i]; cc[1][1] += bx[i] * bx[i]; cc[1][2] += bx[i] * by[i]; cc[2][2] += by[i] * by[i]; aa[0] += ay[i]; aa[1] += ay[i] * bx[i]; aa[2] += ay[i] * by[i]; bb[0] += ax[i]; bb[1] += ax[i] * bx[i]; bb[2] += ax[i] * by[i]; } cc[1][0] = cc[0][1]; cc[2][0] = cc[0][2]; cc[2][1] = cc[1][2]; /* aa and bb are solved */ if (inverse(cc) < 0) return (-1); if (m_mult(cc, aa, aar) < 0 || m_mult(cc, bb, bbr) < 0) return (-1); /* the equation coefficients */ B0 = aar[0]; B1 = aar[1]; B2 = aar[2]; B3 = bbr[0]; B4 = bbr[1]; B5 = bbr[2]; /* the inverse equation */ x = B2 * B4 - B1 * B5; if (!x) return (-1); A0 = (B1 * B3 - B0 * B4) / x; A1 = -B1 / x; A2 = B4 / x; A3 = (B0 * B5 - B2 * B3) / x; A4 = B2 / x; A5 = -B5 / x; return 1; } int transform_a_into_b(double ax, double ay, double *bx, double *by) { *by = A0 + A1 * ax + A2 * ay; *bx = A3 + A4 * ax + A5 * ay; return 0; } int transform_b_into_a(double bx, double by, double *ax, double *ay) { *ay = B0 + B1 * bx + B2 * by; *ax = B3 + B4 * bx + B5 * by; return 0; } /************************************************************** These routines are internal to this source code solve (a, b) double a[3][3] double b[3] equation solver used by compute_transformation_coef() **************************************************************/ /* #define abs(xx) (xx >= 0 ? xx : -xx) */ /* #define N 3 */ int residuals_a_predicts_b(double ax[], double ay[], double bx[], double by[], int use[], int n, double residuals[], double *rms) { resid(ax, ay, bx, by, use, n, residuals, rms, 1); return 0; } int residuals_b_predicts_a(double ax[], double ay[], double bx[], double by[], int use[], int n, double residuals[], double *rms) { resid(ax, ay, bx, by, use, n, residuals, rms, 0); return 0; } /** * \fn int print_transform_matrix (void) * * \brief Prints matrix to stdout in human readable format. * * \return int 1 */ int print_transform_matrix(void) { fprintf(stdout, "\nTransformation Matrix\n"); fprintf(stdout, "| xoff a b |\n"); fprintf(stdout, "| yoff d e |\n"); fprintf(stdout, "-------------------------------------------\n"); fprintf(stdout, "%f %f %f \n", -B3, B2, -B5); fprintf(stdout, "%f %f %f \n", -B0, -B1, B4); fprintf(stdout, "-------------------------------------------\n"); return 1; } static int resid(double ax[], double ay[], double bx[], double by[], int use[], int n, double residuals[], double *rms, int atob) { double x, y; int i; int count; double sum; double delta; double dx, dy; count = 0; sum = 0.0; for (i = 0; i < n; i++) { if (!use[i]) continue; count++; if (atob) { transform_a_into_b(ax[i], ay[i], &x, &y); dx = x - bx[i]; dy = y - by[i]; } else { transform_b_into_a(bx[i], by[i], &x, &y); dx = x - ax[i]; dy = y - ay[i]; } delta = dx * dx + dy * dy; residuals[i] = sqrt(delta); sum += delta; } *rms = sqrt(sum / count); return 0; }