/****************************************************************************
*
* MODULE: g.transform
* AUTHOR(S): Brian J. Buckley
* Glynn Clements
* PURPOSE: Utility to compute transformation based upon GCPs and
* output error measurements
* COPYRIGHT: (C) 2006-2008 by the GRASS Development Team
*
* This program is free software under the GNU General Public
* License (>=v2). Read the file COPYING that comes with GRASS
* for details.
*
*****************************************************************************/
#include
#include
#include
#include
#include
#include
#include
#include
extern int CRS_compute_georef_equations(struct Control_Points *, double *,
double *, double *, double *, int);
extern int CRS_georef(double, double, double *, double *, double *, double *,
int);
struct Max
{
int idx;
double val;
};
struct Stats
{
struct Max x, y, g;
double sum2, rms;
};
static char *name;
static int order;
static int summary;
static char **columns;
static int need_fwd;
static int need_rev;
static int need_fd;
static int need_rd;
static struct Control_Points points;
static int equation_stat;
static int count;
static struct Stats fwd, rev;
static void update_max(struct Max *m, int n, double k)
{
if (k > m->val) {
m->idx = n;
m->val = k;
}
}
static void update_stats(struct Stats *st, int n, double dx, double dy,
double dg, double d2)
{
update_max(&st->x, n, dx);
update_max(&st->y, n, dy);
update_max(&st->g, n, dg);
st->sum2 += d2;
}
static void diagonal(double *dg, double *d2, double dx, double dy)
{
*d2 = dx * dx + dy * dy;
*dg = sqrt(*d2);
}
static void compute_transformation(void)
{
static const int order_pnts[3] = { 3, 6, 10 };
double E12[10], N12[10], E21[10], N21[10];
int n, i;
equation_stat =
CRS_compute_georef_equations(&points, E12, N12, E21, N21, order);
if (equation_stat == 0)
G_fatal_error(_("Not enough points, %d are required"),
order_pnts[order - 1]);
if (equation_stat <= 0)
return;
count = 0;
for (n = 0; n < points.count; n++) {
double e1, n1, e2, n2;
double fx, fy, fd, fd2;
double rx, ry, rd, rd2;
if (points.status[n] <= 0)
continue;
count++;
if (need_fwd) {
CRS_georef(points.e1[n], points.n1[n], &e2, &n2, E12, N12, order);
fx = fabs(e2 - points.e2[n]);
fy = fabs(n2 - points.n2[n]);
if (need_fd)
diagonal(&fd, &fd2, fx, fy);
if (summary)
update_stats(&fwd, n, fx, fy, fd, fd2);
}
if (need_rev) {
CRS_georef(points.e2[n], points.n2[n], &e1, &n1, E21, N21, order);
rx = fabs(e1 - points.e1[n]);
ry = fabs(n1 - points.n1[n]);
if (need_rd)
diagonal(&rd, &rd2, rx, ry);
if (summary)
update_stats(&rev, n, rx, ry, rd, rd2);
}
if (!columns)
continue;
for (i = 0;; i++) {
const char *col = columns[i];
if (!col)
break;
if (strcmp("idx", col) == 0)
printf(" %d", n);
if (strcmp("src", col) == 0)
printf(" %f %f", points.e1[n], points.n1[n]);
if (strcmp("dst", col) == 0)
printf(" %f %f", points.e2[n], points.n2[n]);
if (strcmp("fwd", col) == 0)
printf(" %f %f", e2, n2);
if (strcmp("rev", col) == 0)
printf(" %f %f", e1, n1);
if (strcmp("fxy", col) == 0)
printf(" %f %f", fx, fy);
if (strcmp("rxy", col) == 0)
printf(" %f %f", rx, ry);
if (strcmp("fd", col) == 0)
printf(" %f", fd);
if (strcmp("rd", col) == 0)
printf(" %f", rd);
}
printf("\n");
}
if (summary && count > 0) {
fwd.rms = sqrt(fwd.sum2 / count);
rev.rms = sqrt(rev.sum2 / count);
}
}
static void do_max(char name, const struct Max *m)
{
printf("%c[%d] = %.2f\n", name, m->idx, m->val);
}
static void do_stats(const char *name, const struct Stats *st)
{
printf("%s:\n", name);
do_max('x', &st->x);
do_max('y', &st->y);
do_max('g', &st->g);
printf("RMS = %.2f\n", st->rms);
}
static void analyze(void)
{
if (equation_stat == -1)
G_warning(_("Poorly placed control points"));
else if (equation_stat == -2)
G_fatal_error(_("Insufficient memory"));
else if (equation_stat < 0)
G_fatal_error(_("Parameter error"));
else if (equation_stat == 0)
G_fatal_error(_("No active control points"));
else if (summary) {
printf("Number of active points: %d\n", count);
do_stats("Forward", &fwd);
do_stats("Reverse", &rev);
}
}
static void parse_format(void)
{
int i;
if (summary) {
need_fwd = need_rev = need_fd = need_rd = 1;
return;
}
if (!columns)
return;
for (i = 0;; i++) {
const char *col = columns[i];
if (!col)
break;
if (strcmp("fwd", col) == 0)
need_fwd = 1;
if (strcmp("fxy", col) == 0)
need_fwd = 1;
if (strcmp("fd", col) == 0)
need_fwd = need_fd = 1;
if (strcmp("rev", col) == 0)
need_rev = 1;
if (strcmp("rxy", col) == 0)
need_rev = 1;
if (strcmp("rd", col) == 0)
need_rev = need_rd = 1;
}
}
int main(int argc, char **argv)
{
struct Option *grp, *val, *fmt;
struct Flag *sum;
struct GModule *module;
G_gisinit(argv[0]);
/* Get Args */
module = G_define_module();
G_add_keyword(_("general"));
G_add_keyword(_("transformation"));
G_add_keyword(_("GCP"));
module->description =
_("Computes a coordinate transformation based on the control points.");
grp = G_define_standard_option(G_OPT_I_GROUP);
val = G_define_option();
val->key = "order";
val->type = TYPE_INTEGER;
val->required = YES;
val->options = "1-3";
val->description = _("Rectification polynomial order");
fmt = G_define_option();
fmt->key = "format";
fmt->type = TYPE_STRING;
fmt->required = NO;
fmt->multiple = YES;
fmt->options = "idx,src,dst,fwd,rev,fxy,rxy,fd,rd";
fmt->descriptions = _("idx;point index;"
"src;source coordinates;"
"dst;destination coordinates;"
"fwd;forward coordinates (destination);"
"rev;reverse coordinates (source);"
"fxy;forward coordinates difference (destination);"
"rxy;reverse coordinates difference (source);"
"fd;forward error (destination);"
"rd;reverse error (source)");
fmt->answer = "fd,rd";
fmt->description = _("Output format");
sum = G_define_flag();
sum->key = 's';
sum->description = _("Display summary information");
if (G_parser(argc, argv))
exit(EXIT_FAILURE);
name = grp->answer;
order = atoi(val->answer);
summary = !!sum->answer;
columns = fmt->answers;
I_get_control_points(name, &points);
parse_format();
compute_transformation();
I_put_control_points(name, &points);
analyze();
return 0;
}