/**************************************************************************** * MODULE: R-Tree library * * AUTHOR(S): Antonin Guttman - original code * Daniel Green (green@superliminal.com) - major clean-up * and implementation of bounding spheres * Markus Metz - file-based and memory-based R*-tree * * PURPOSE: Multidimensional index * * COPYRIGHT: (C) 2010 by the GRASS Development Team * * This program is free software under the GNU General Public * License (>=v2). Read the file COPYING that comes with GRASS * for details. *****************************************************************************/ #include #include #include #include "index.h" int RTreeValidChildM(union RTree_Child *child) { return (child->ptr != NULL); } /* * Search in an index tree for all data retangles that * overlap the argument rectangle. * Return the number of qualifying data rects. */ int RTreeSearchM(struct RTree *t, struct RTree_Rect *r, SearchHitCallback *shcb, void *cbarg) { struct RTree_Node *n; int hitCount = 0, notfound; int i; int top = 0; struct nstack *s = t->ns; /* stack size of t->rootlevel + 1 is enough because of depth first search */ /* only one node per level on stack at any given time */ /* add root node position to stack */ s[top].sn = t->root; s[top].branch_id = i = 0; n = s[top].sn; while (top >= 0) { n = s[top].sn; if (s[top].sn->level > 0) { /* this is an internal node in the tree */ notfound = 1; for (i = s[top].branch_id; i < t->nodecard; i++) { if (s[top].sn->branch[i].child.ptr && RTreeOverlap(r, &(s[top].sn->branch[i].rect), t)) { s[top++].branch_id = i + 1; /* add next node to stack */ s[top].sn = n->branch[i].child.ptr; s[top].branch_id = 0; notfound = 0; break; } } if (notfound) { /* nothing else found, go back up */ s[top].branch_id = t->nodecard; top--; } } else { /* this is a leaf node */ for (i = 0; i < t->leafcard; i++) { if (s[top].sn->branch[i].child.id && RTreeOverlap(r, &(s[top].sn->branch[i].rect), t)) { hitCount++; if (shcb) { /* call the user-provided callback */ if (!shcb(s[top].sn->branch[i].child.id, &s[top].sn->branch[i].rect, cbarg)) { /* callback wants to terminate search early */ return hitCount; } } } } top--; } } return hitCount; } /* * Inserts a new data rectangle into the index structure. * Non-recursively descends tree. * Returns 0 if node was not split and nothing was removed. * Returns 1 if root node was split. Old node updated to become one of two. * Returns 2 if branches need to be reinserted. * The level argument specifies the number of steps up from the leaf * level to insert; e.g. a data rectangle goes in at level = 0. */ static int RTreeInsertRect2M(struct RTree_Rect *r, union RTree_Child child, int level, struct RTree_Node **newnode, struct RTree *t, struct RTree_ListBranch **ee, char *overflow) { int i; struct RTree_Node *n, *n2; struct RTree_Rect *cover; int top = 0, down = 0; int result; struct RTree_Branch *b = &(t->tmpb2); struct nstack *s = t->ns; /* add root node to stack */ s[top].sn = t->root; /* go down to level of insertion */ while (s[top].sn->level > level) { n = s[top].sn; i = RTreePickBranch(r, n, t); s[top++].branch_id = i; /* add next node to stack */ s[top].sn = n->branch[i].child.ptr; } /* Have reached level for insertion. Remove p rectangles or split */ RTreeCopyRect(&(b->rect), r, t); /* child field of leaves contains tid of data record */ b->child = child; /* add branch, may split node or remove branches */ cover = NULL; if (top) cover = &(s[top - 1].sn->branch[s[top - 1].branch_id].rect); result = RTreeAddBranch(b, s[top].sn, &n2, ee, cover, overflow, t); /* update node count */ if (result == 1) { t->n_nodes++; } /* go back up */ while (top) { down = top--; i = s[top].branch_id; if (result == 0) { /* branch was added */ RTreeExpandRect(&(s[top].sn->branch[i].rect), r, t); } else if (result == 2) { /* branches were removed */ /* get node cover of previous node */ RTreeNodeCover(s[down].sn, &(s[top].sn->branch[i].rect), t); } else if (result == 1) { /* node was split */ /* get node cover of previous node */ RTreeNodeCover(s[down].sn, &(s[top].sn->branch[i].rect), t); /* add new branch for new node previously added by RTreeAddBranch() */ b->child.ptr = n2; RTreeNodeCover(b->child.ptr, &(b->rect), t); /* add branch, may split node or remove branches */ cover = NULL; if (top) cover = &(s[top - 1].sn->branch[s[top - 1].branch_id].rect); result = RTreeAddBranch(b, s[top].sn, &n2, ee, cover, overflow, t); /* update node count */ if (result == 1) { t->n_nodes++; } } } *newnode = n2; return result; } /* * Insert a data rectangle into an index structure. * RTreeInsertRect provides for splitting the root; * returns 1 if root was split, 0 if it was not. * The level argument specifies the number of steps up from the leaf * level to insert; e.g. a data rectangle goes in at level = 0. * RTreeInsertRect2 does the actual insertion. */ int RTreeInsertRectM(struct RTree_Rect *r, union RTree_Child child, int level, struct RTree *t) { struct RTree_Node *newnode, *newroot; struct RTree_ListBranch *reInsertList = NULL; struct RTree_ListBranch *e; int result; char overflow[MAXLEVEL]; struct RTree_Branch *b = &(t->tmpb1); /* R*-tree forced reinsertion: for each level only once */ memset(overflow, t->overflow, MAXLEVEL); result = RTreeInsertRect2M(r, child, level, &newnode, t, &reInsertList, overflow); if (result == 1) { /* root split */ /* grow a new root, & tree taller */ t->rootlevel++; newroot = RTreeAllocNode(t, t->rootlevel); newroot->level = t->rootlevel; /* branch for old root */ RTreeNodeCover(t->root, &(b->rect), t); b->child.ptr = t->root; RTreeAddBranch(b, newroot, NULL, NULL, NULL, NULL, t); /* branch for new node created by RTreeInsertRect2() */ RTreeNodeCover(newnode, &(b->rect), t); b->child.ptr = newnode; RTreeAddBranch(b, newroot, NULL, NULL, NULL, NULL, t); /* set new root node */ t->root = newroot; t->n_nodes++; return result; } if (result == 2) { /* branches were removed */ while (reInsertList) { /* get next branch in list */ RTreeCopyBranch(b, &(reInsertList->b), t); level = reInsertList->level; e = reInsertList; reInsertList = reInsertList->next; RTreeFreeListBranch(e); /* reinsert branches */ result = RTreeInsertRect2M(&(b->rect), b->child, level, &newnode, t, &reInsertList, overflow); if (result == 1) { /* root split */ /* grow a new root, & tree taller */ t->rootlevel++; newroot = RTreeAllocNode(t, t->rootlevel); newroot->level = t->rootlevel; /* branch for old root */ RTreeNodeCover(t->root, &(b->rect), t); b->child.ptr = t->root; RTreeAddBranch(b, newroot, NULL, NULL, NULL, NULL, t); /* branch for new node created by RTreeInsertRect2() */ RTreeNodeCover(newnode, &(b->rect), t); b->child.ptr = newnode; RTreeAddBranch(b, newroot, NULL, NULL, NULL, NULL, t); /* set new root node */ t->root = newroot; t->n_nodes++; } } } return result; } /* * Delete a rectangle from non-root part of an index structure. * Called by RTreeDeleteRect. Descends tree non-recursively, * merges branches on the way back up. * Returns 1 if record not found, 0 if success. */ static int RTreeDeleteRect2M(struct RTree_Rect *r, union RTree_Child child, struct RTree *t, struct RTree_ListNode **ee) { int i, notfound = 1; struct RTree_Node *n; int top = 0, down = 0; int minfill; struct nstack *s = t->ns; assert(ee); /* add root node position to stack */ s[top].sn = t->root; s[top].branch_id = 0; n = s[top].sn; while (notfound && top >= 0) { /* go down to level 0, remember path */ if (s[top].sn->level > 0) { n = s[top].sn; for (i = s[top].branch_id; i < t->nodecard; i++) { if (n->branch[i].child.ptr && RTreeOverlap(r, &(n->branch[i].rect), t)) { s[top++].branch_id = i + 1; /* add next node to stack */ s[top].sn = n->branch[i].child.ptr; s[top].branch_id = 0; notfound = 0; break; } } if (notfound) { /* nothing else found, go back up */ s[top].branch_id = t->nodecard; top--; } else /* found a way down but not yet the item */ notfound = 1; } else { for (i = 0; i < t->leafcard; i++) { if (s[top].sn->branch[i].child.id && s[top].sn->branch[i].child.id == child.id) { /* found item */ RTreeDisconnectBranch(s[top].sn, i, t); t->n_leafs--; notfound = 0; break; } } if (notfound) /* continue searching */ top--; } } if (notfound) { return notfound; } /* go back up */ while (top) { down = top; top--; i = s[top].branch_id - 1; assert(s[down].sn->level == s[top].sn->level - 1); minfill = (s[down].sn->level ? t->min_node_fill : t->min_leaf_fill); if (s[down].sn->count >= minfill) { /* just update node cover */ RTreeNodeCover(s[down].sn, &(s[top].sn->branch[i].rect), t); } else { /* not enough entries in child, eliminate child node */ RTreeReInsertNode(s[top].sn->branch[i].child.ptr, ee); RTreeDisconnectBranch(s[top].sn, i, t); } } return notfound; } /* * should be called by RTreeDeleteRect() only * * Delete a data rectangle from an index structure. * Pass in a pointer to a Rect, the tid of the record, ptr RTree. * Returns 1 if record not found, 0 if success. * RTreeDeleteRect1 provides for eliminating the root. */ int RTreeDeleteRectM(struct RTree_Rect *r, union RTree_Child child, struct RTree *t) { int i; struct RTree_Node *n; struct RTree_ListNode *reInsertList = NULL; struct RTree_ListNode *e; if (!RTreeDeleteRect2M(r, child, t, &reInsertList)) { /* found and deleted a data item */ /* reinsert any branches from eliminated nodes */ while (reInsertList) { t->n_nodes--; n = reInsertList->node; if (n->level > 0) { /* reinsert node branches */ for (i = 0; i < t->nodecard; i++) { if (n->branch[i].child.ptr) { RTreeInsertRectM(&(n->branch[i].rect), n->branch[i].child, n->level, t); } } } else { /* reinsert leaf branches */ for (i = 0; i < t->leafcard; i++) { if (n->branch[i].child.id) { RTreeInsertRectM(&(n->branch[i].rect), n->branch[i].child, n->level, t); } } } e = reInsertList; reInsertList = reInsertList->next; RTreeFreeNode(e->node); RTreeFreeListNode(e); } /* check for redundant root (not leaf, 1 child) and eliminate */ n = t->root; if (n->count == 1 && n->level > 0) { for (i = 0; i < t->nodecard; i++) { if (n->branch[i].child.ptr) break; } t->root = n->branch[i].child.ptr; RTreeFreeNode(n); t->rootlevel--; } return 0; } return 1; }