/**************************************************************************** * MODULE: R-Tree library * * AUTHOR(S): Antonin Guttman - original code * Daniel Green (green@superliminal.com) - major clean-up * and implementation of bounding spheres * Markus Metz - file-based and memory-based R*-tree * * PURPOSE: Multidimensional index * * COPYRIGHT: (C) 2010 by the GRASS Development Team * * This program is free software under the GNU General Public * License (>=v2). Read the file COPYING that comes with GRASS * for details. *****************************************************************************/ #include #include #include #include "index.h" #include #include #include #define BIG_NUM (FLT_MAX/4.0) #define Undefined(x, t) ((x)->boundary[0] > (x)->boundary[t->ndims_alloc]) /*! \brief Create a new rectangle for a given tree This method allocates a new rectangle and initializes the internal boundary coordinates based on the tree dimension. Hence a call to RTreeNewBoundary() is not necessary. \param t The pointer to a RTree struct \return A new allocated RTree_Rect struct */ struct RTree_Rect *RTreeAllocRect(struct RTree *t) { struct RTree_Rect *r; assert(t); r = (struct RTree_Rect *)malloc(sizeof(struct RTree_Rect)); assert(r); r->boundary = RTreeAllocBoundary(t); return r; } /*! \brief Delete a rectangle This method deletes (free) the allocated memory of a rectangle. \param r The pointer to the rectangle to be deleted */ void RTreeFreeRect(struct RTree_Rect *r) { assert(r); RTreeFreeBoundary(r); free(r); } /*! \brief Allocate the boundary array of a rectangle for a given tree This method allocated the boundary coordinates array in provided rectangle. It does not release previously allocated memory. \param r The pointer to rectangle to initialize the boundary coordinates. This is usually a rectangle that was created on the stack or self allocated. \param t The pointer to a RTree struct */ RectReal *RTreeAllocBoundary(struct RTree *t) { RectReal *boundary = (RectReal *)malloc(t->rectsize); assert(boundary); return boundary; } /*! \brief Delete the boundary of a rectangle This method deletes (free) the memory of the boundary of a rectangle and sets the boundary pointer to NULL. \param r The pointer to the rectangle to delete the boundary from. */ void RTreeFreeBoundary(struct RTree_Rect *r) { assert(r); if (r->boundary) free(r->boundary); r->boundary = NULL; } /*! \brief Initialize a rectangle to have all 0 coordinates. */ void RTreeInitRect(struct RTree_Rect *r, struct RTree *t) { register int i; for (i = 0; i < t->ndims_alloc; i++) r->boundary[i] = r->boundary[i + t->ndims_alloc] = (RectReal) 0; } /*! \brief Set one dimensional coordinates of a rectangle for a given tree. All coordinates of the rectangle will be initialized to 0 before the x coordinates are set. \param r The pointer to the rectangle \param t The pointer to the RTree \param x_min The lower x coordinate \param x_max The higher x coordinate */ void RTreeSetRect1D(struct RTree_Rect *r, struct RTree *t, double x_min, double x_max) { RTreeInitRect(r, t); r->boundary[0] = (RectReal)x_min; r->boundary[t->ndims_alloc] = (RectReal)x_max; } /*! \brief Set two dimensional coordinates of a rectangle for a given tree. All coordinates of the rectangle will be initialized to 0 before the x and y coordinates are set. \param r The pointer to the rectangle \param t The pointer to the RTree \param x_min The lower x coordinate \param x_max The higher x coordinate \param y_min The lower y coordinate \param y_max The higher y coordinate */ void RTreeSetRect2D(struct RTree_Rect *r, struct RTree *t, double x_min, double x_max, double y_min, double y_max) { RTreeInitRect(r, t); r->boundary[0] = (RectReal)x_min; r->boundary[t->ndims_alloc] = (RectReal)x_max; r->boundary[1] = (RectReal)y_min; r->boundary[1 + t->ndims_alloc] = (RectReal)y_max; } /*! \brief Set three dimensional coordinates of a rectangle for a given tree. All coordinates of the rectangle will be initialized to 0 before the x,y and z coordinates are set. \param r The pointer to the rectangle \param t The pointer to the RTree \param x_min The lower x coordinate \param x_max The higher x coordinate \param y_min The lower y coordinate \param y_max The higher y coordinate \param z_min The lower z coordinate \param z_max The higher z coordinate */ void RTreeSetRect3D(struct RTree_Rect *r, struct RTree *t, double x_min, double x_max, double y_min, double y_max, double z_min, double z_max) { RTreeInitRect(r, t); r->boundary[0] = (RectReal)x_min; r->boundary[t->ndims_alloc] = (RectReal)x_max; r->boundary[1] = (RectReal)y_min; r->boundary[1 + t->ndims_alloc] = (RectReal)y_max; r->boundary[2] = (RectReal)z_min; r->boundary[2 + t->ndims_alloc] = (RectReal)z_max; } /*! \brief Set 4 dimensional coordinates of a rectangle for a given tree. All coordinates of the rectangle will be initialized to 0 before the x,y,z and t coordinates are set. \param r The pointer to the rectangle \param t The pointer to the RTree \param x_min The lower x coordinate \param x_max The higher x coordinate \param y_min The lower y coordinate \param y_max The higher y coordinate \param z_min The lower z coordinate \param z_max The higher z coordinate \param t_min The lower t coordinate \param t_max The higher t coordinate */ void RTreeSetRect4D(struct RTree_Rect *r, struct RTree *t, double x_min, double x_max, double y_min, double y_max, double z_min, double z_max, double t_min, double t_max) { assert(t->ndims >= 4); RTreeInitRect(r, t); r->boundary[0] = (RectReal)x_min; r->boundary[t->ndims_alloc] = (RectReal)x_max; r->boundary[1] = (RectReal)y_min; r->boundary[1 + t->ndims_alloc] = (RectReal)y_max; r->boundary[2] = (RectReal)z_min; r->boundary[2 + t->ndims_alloc] = (RectReal)z_max; r->boundary[3] = (RectReal)t_min; r->boundary[3 + t->ndims_alloc] = (RectReal)t_max; } /* Return a rect whose first low side is higher than its opposite side - interpreted as an undefined rect. */ void RTreeNullRect(struct RTree_Rect *r, struct RTree *t) { register int i; /* assert(r); */ r->boundary[0] = (RectReal) 1; r->boundary[t->nsides_alloc - 1] = (RectReal) - 1; for (i = 1; i < t->ndims_alloc; i++) r->boundary[i] = r->boundary[i + t->ndims_alloc] = (RectReal) 0; return; } #if 0 /* Fills in random coordinates in a rectangle. The low side is guaranteed to be less than the high side. */ void RTreeRandomRect(struct RTree_Rect *R) { register struct RTree_Rect *r = R; register int i; register RectReal width; for (i = 0; i < NUMDIMS; i++) { /* width from 1 to 1000 / 4, more small ones */ width = drand48() * (1000 / 4) + 1; /* sprinkle a given size evenly but so they stay in [0,100] */ r->boundary[i] = drand48() * (1000 - width); /* low side */ r->boundary[i + NUMDIMS] = r->boundary[i] + width; /* high side */ } } /* Fill in the boundaries for a random search rectangle. Pass in a pointer to a rect that contains all the data, and a pointer to the rect to be filled in. Generated rect is centered randomly anywhere in the data area, and has size from 0 to the size of the data area in each dimension, i.e. search rect can stick out beyond data area. */ void RTreeSearchRect(struct RTree_Rect *Search, struct RTree_Rect *Data) { register struct RTree_Rect *search = Search, *data = Data; register int i, j; register RectReal size, center; assert(search); assert(data); for (i = 0; i < NUMDIMS; i++) { j = i + NUMDIMS; /* index for high side boundary */ if (data->boundary[i] > -BIG_NUM && data->boundary[j] < BIG_NUM) { size = (drand48() * (data->boundary[j] - data->boundary[i] + 1)) / 2; center = data->boundary[i] + drand48() * (data->boundary[j] - data->boundary[i] + 1); search->boundary[i] = center - size / 2; search->boundary[j] = center + size / 2; } else { /* some open boundary, search entire dimension */ search->boundary[i] = -BIG_NUM; search->boundary[j] = BIG_NUM; } } } #endif /* Print out the data for a rectangle. */ void RTreePrintRect(struct RTree_Rect *R, int depth, struct RTree *t) { register struct RTree_Rect *r = R; register int i; assert(r); RTreeTabIn(depth); fprintf(stdout, "rect:\n"); for (i = 0; i < t->ndims_alloc; i++) { RTreeTabIn(depth + 1); fprintf(stdout, "%f\t%f\n", r->boundary[i], r->boundary[i + t->ndims_alloc]); } } /* Calculate the n-dimensional volume of a rectangle */ RectReal RTreeRectVolume(struct RTree_Rect *R, struct RTree *t) { register struct RTree_Rect *r = R; register int i; register RectReal volume = (RectReal) 1; /* assert(r); */ if (Undefined(r, t)) return (RectReal) 0; for (i = 0; i < t->ndims; i++) volume *= r->boundary[i + t->ndims_alloc] - r->boundary[i]; assert(volume >= 0.0); return volume; } /* Define the NUMDIMS-dimensional volume the unit sphere in that dimension into the symbol "UnitSphereVolume" Note that if the gamma function is available in the math library and if the compiler supports static initialization using functions, this is easily computed for any dimension. If not, the value can be precomputed and taken from a table. The following code can do it either way. */ #ifdef gamma /* computes the volume of an N-dimensional sphere. */ /* derived from formule in "Regular Polytopes" by H.S.M Coxeter */ static double sphere_volume(double dimension) { double log_gamma, log_volume; log_gamma = gamma(dimension / 2.0 + 1); log_volume = dimension / 2.0 * log(M_PI) - log_gamma; return exp(log_volume); } static const double UnitSphereVolume = sphere_volume(20); #else /* Precomputed volumes of the unit spheres for the first few dimensions */ const double UnitSphereVolumes[] = { 0.000000, /* dimension 0 */ 2.000000, /* dimension 1 */ 3.141593, /* dimension 2 */ 4.188790, /* dimension 3 */ 4.934802, /* dimension 4 */ 5.263789, /* dimension 5 */ 5.167713, /* dimension 6 */ 4.724766, /* dimension 7 */ 4.058712, /* dimension 8 */ 3.298509, /* dimension 9 */ 2.550164, /* dimension 10 */ 1.884104, /* dimension 11 */ 1.335263, /* dimension 12 */ 0.910629, /* dimension 13 */ 0.599265, /* dimension 14 */ 0.381443, /* dimension 15 */ 0.235331, /* dimension 16 */ 0.140981, /* dimension 17 */ 0.082146, /* dimension 18 */ 0.046622, /* dimension 19 */ 0.025807, /* dimension 20 */ }; #if NUMDIMS > 20 # error "not enough precomputed sphere volumes" #endif #define UnitSphereVolume UnitSphereVolumes[NUMDIMS] #endif /* Calculate the n-dimensional volume of the bounding sphere of a rectangle */ #if 0 /* * A fast approximation to the volume of the bounding sphere for the * given Rect. By Paul B. */ RectReal RTreeRectSphericalVolume(struct RTree_Rect *R, struct RTree *t) { register struct RTree_Rect *r = R; register int i; RectReal maxsize = (RectReal) 0, c_size; /* assert(r); */ if (Undefined(r, t)) return (RectReal) 0; for (i = 0; i < t->ndims; i++) { c_size = r->boundary[i + NUMDIMS] - r->boundary[i]; if (c_size > maxsize) maxsize = c_size; } return (RectReal) (pow(maxsize / 2, NUMDIMS) * UnitSphereVolumes[t->ndims]); } #endif /* * The exact volume of the bounding sphere for the given Rect. */ RectReal RTreeRectSphericalVolume(struct RTree_Rect *r, struct RTree *t) { int i; double sum_of_squares = 0, extent; /* assert(r); */ if (Undefined(r, t)) return (RectReal) 0; for (i = 0; i < t->ndims; i++) { extent = (r->boundary[i + t->ndims_alloc] - r->boundary[i]); /* extent should be half extent : /4 */ sum_of_squares += extent * extent / 4.; } return (RectReal) (pow(sqrt(sum_of_squares), t->ndims) * UnitSphereVolumes[t->ndims]); } /* Calculate the n-dimensional surface area of a rectangle */ RectReal RTreeRectSurfaceArea(struct RTree_Rect *r, struct RTree *t) { int i, j; RectReal face_area, sum = (RectReal) 0; /*assert(r); */ if (Undefined(r, t)) return (RectReal) 0; for (i = 0; i < t->ndims; i++) { face_area = (RectReal) 1; for (j = 0; j < t->ndims; j++) /* exclude i extent from product in this dimension */ if (i != j) { face_area *= (r->boundary[j + t->ndims_alloc] - r->boundary[j]); } sum += face_area; } return 2 * sum; } /* Calculate the n-dimensional margin of a rectangle the margin is the sum of the lengths of the edges */ RectReal RTreeRectMargin(struct RTree_Rect *r, struct RTree *t) { int i; RectReal margin = 0.0; /* assert(r); */ for (i = 0; i < t->ndims; i++) { margin += r->boundary[i + t->ndims_alloc] - r->boundary[i]; } return margin; } /* Combine two rectangles, make one that includes both. */ void RTreeCombineRect(struct RTree_Rect *r1, struct RTree_Rect *r2, struct RTree_Rect *r3, struct RTree *t) { int i, j; /* assert(r1 && r2 && r3); */ if (Undefined(r1, t)) { for (i = 0; i < t->nsides_alloc; i++) r3->boundary[i] = r2->boundary[i]; return; } if (Undefined(r2, t)) { for (i = 0; i < t->nsides_alloc; i++) r3->boundary[i] = r1->boundary[i]; return; } for (i = 0; i < t->ndims; i++) { r3->boundary[i] = MIN(r1->boundary[i], r2->boundary[i]); j = i + t->ndims_alloc; r3->boundary[j] = MAX(r1->boundary[j], r2->boundary[j]); } for (i = t->ndims; i < t->ndims_alloc; i++) { r3->boundary[i] = 0; j = i + t->ndims_alloc; r3->boundary[j] = 0; } } /* Expand first rectangle to cover second rectangle. */ int RTreeExpandRect(struct RTree_Rect *r1, struct RTree_Rect *r2, struct RTree *t) { int i, j, ret = 0; /* assert(r1 && r2); */ if (Undefined(r2, t)) return ret; for (i = 0; i < t->ndims; i++) { if (r1->boundary[i] > r2->boundary[i]) { r1->boundary[i] = r2->boundary[i]; ret = 1; } j = i + t->ndims_alloc; if (r1->boundary[j] < r2->boundary[j]) { r1->boundary[j] = r2->boundary[j]; ret = 1; } } for (i = t->ndims; i < t->ndims_alloc; i++) { r1->boundary[i] = 0; j = i + t->ndims_alloc; r1->boundary[j] = 0; } return ret; } /* Decide whether two rectangles are identical. */ int RTreeCompareRect(struct RTree_Rect *r, struct RTree_Rect *s, struct RTree *t) { register int i, j; /* assert(r && s); */ for (i = 0; i < t->ndims; i++) { j = i + t->ndims_alloc; /* index for high sides */ if (r->boundary[i] != s->boundary[i] || r->boundary[j] != s->boundary[j]) { return 0; } } return 1; } /* Decide whether two rectangles overlap or touch. */ int RTreeOverlap(struct RTree_Rect *r, struct RTree_Rect *s, struct RTree *t) { register int i, j; /* assert(r && s); */ for (i = 0; i < t->ndims; i++) { j = i + t->ndims_alloc; /* index for high sides */ if (r->boundary[i] > s->boundary[j] || s->boundary[i] > r->boundary[j]) { return FALSE; } } return TRUE; } /* Decide whether rectangle s is contained in rectangle r. */ int RTreeContained(struct RTree_Rect *r, struct RTree_Rect *s, struct RTree *t) { register int i, j; /* assert(r && s); */ /* undefined rect is contained in any other */ if (Undefined(r, t)) return TRUE; /* no rect (except an undefined one) is contained in an undef rect */ if (Undefined(s, t)) return FALSE; for (i = 0; i < t->ndims; i++) { j = i + t->ndims_alloc; /* index for high sides */ if (s->boundary[i] < r->boundary[i] || s->boundary[j] > r->boundary[j]) return FALSE; } return TRUE; } /* Decide whether rectangle s fully contains rectangle r. */ int RTreeContains(struct RTree_Rect *r, struct RTree_Rect *s, struct RTree *t) { register int i, j; /* assert(r && s); */ /* undefined rect is contained in any other */ if (Undefined(r, t)) return TRUE; /* no rect (except an undefined one) is contained in an undef rect */ if (Undefined(s, t)) return FALSE; for (i = 0; i < t->ndims; i++) { j = i + t->ndims_alloc; /* index for high sides */ if (s->boundary[i] > r->boundary[i] || s->boundary[j] < r->boundary[j]) return FALSE; } return TRUE; }