/*! \page vectorlib GRASS Vector Library
by GRASS Development Team (https://grass.osgeo.org)
\tableofcontents
\par Related pages
- \subpage vlibDescription
- \subpage vlibFormat
- \subpage vlibTopology
- \subpage vlibIndices
- \subpage vlibAscii
- \subpage vlibTin
- \subpage vlibFAQ
- \subpage vlibLists
\par Data providers for external formats
- \subpage vlibOgr
- \subpage vlibPg
\par Related libraries
- \subpage veditlib
- \subpage netalib
\section vlibBackground Background
Generally, the vector data model is used to describe geographic
phenomena which may be represented by geometric entities like
points, lines, and areas. The GRASS vector
data model includes the description of topology, where
besides the coordinates describing the location of the primitives
(points, lines, boundaries, centroids, faces, kernels, and volumes),
their spatial relations are also stored. In general, topological GIS
requires a data structure where the common boundary between two
adjacent areas is stored as a single boundary, simplifying vector data
maintenance.
\section vlibIntro Introduction
The GRASS 6/7 vector format is very similar to the previous GRASS 4.x
(5.0/5.3) vector format.
This description covers the new GRASS 6/7 vector library architecture.
This new architecture overcomes the vector limitations of GRASS
4.x-5.4.x by extending the vector support with attributes stored in
the external relational databases, and by new 3D capabilities. Besides
internal file based storage the geometry may alternatively be stored
in a PostGIS database (accessible via OGR interface). This enables
users to maintain large data sets with simultaneous write
access. External GIS formats such as SHAPE-files may be used directly,
without requiring format conversion. All vector data accessed through
the OGR interface have only pseudo-topology and only a limited subset
of vector operations can be performed.
The current implementation includes:
- multi-layer: features in one vector map may represent more
layers and may be linked to more external tables (see \ref
vlibCategoriesLayers)
- 2D and 3D vector geometry with full topology support for 2D and
partial topology support for 3D (see \ref vlibTopoManagement)
- multi-format: external data formats supported (SHAPE-file,
OGR sources etc.)
- portability: platform independent internal format, read- and
writable on 32bit, 64bit etc. computer architectures
- network analysis using integrated dglib library
- spatial index: based on R-tree method for fast vector
geometry access (see \ref vlibSpidx)
- multi-attribute: attributes saved in external Relational
Database Management System (RDBMS) connected through DBMI
library and drivers (see \ref vlibAttributes)
\section vlibVectorMap Vector map definition (native format)
GRASS vector maps are stored in an arc-node representation,
consisting of curves called arcs. An arc is stored as a series of
x,y,z coordinate pairs. Two consecutive x,y,z pairs define an arc segment.
Nodes are created automatically for the two endpoints of an arc.
The user specifies the type of input to GRASS; GRASS doesn't decide. GRASS
supports feature type definition which allows for multiple types to
co-exist in the same map. An area is defined by one or more
boundaries that form a closed ring. A centroid is assigned to the area it is
within/inside (geometrically). The category to which an area belongs
is stored with the centroid. Such centroids are stored in the same binary
'coor' file with other primitives. Areas without centroids are from a
user's perspective holes within another area, therefore not presented to
a user as a real area, the equivalent of a polygon in Simple Feature Access.
Each vector object may have none, one or more categories (cats). More
categories can be distinguished by field number (field, called "layer"
at user level). A vector object can also have multiple categories in the
same layer, an example would be buffers where a single area might belong
to multiple buffers of multiple buffered features. Single and
multi-category support on module level is implemented. The z coordinate
is optional and both 2D and 3D files may be written.
The following vector feature types (primitives) are defined
by the vector library (and holds by the coor file; see also \ref
vlibFeatureTypes):
- point: a point (2D or 3D) - GV_POINT
- line: a directed sequence of connected vertices with two endpoints
called nodes (2D or 3D) - GV_LINE
- boundary: the border line to describe an area (2D only) - GV_BOUNDARY
- centroid: a point within a closed boundary(ies) to describe an area
(2D only) - GV_CENTROID
- face: a 3D boundary (not implemented yet) - GV_FACE
- kernel: a 3D centroid in a volume - GV_KERNEL
From vector feature types mentioned above are derived:
- area: the topological composition of a closed ring of boundary(ies)
and optionally a centroid (2D only, 3D coordinates supported but
ignored) - GV_AREA
- isle: an area within area, not touching the boundaries of the outer
area (2D only, 3D coordinates supported but ignored)
- volume: a 3D corpus, the topological composition of faces and
kernel (not implemented yet) - GV_VOLUME
- hole: a volume within volume, 3D equivalent to isle within area (not
implemented yet)
Note that all lines and boundaries can consist of multiple segments.
Area topology also holds information about isles. Isles are
located within an area, not touching the boundaries of the outer
area. Isles consist of one or more areas and are used internally by
the vector library to maintain correct topology of areas.
\section vlibVectorLevels Levels of read access
There are two levels of read access to the vector data:
- Level One provides simple access to the vector feature
information. There is no access to topology information at this
level.
- Level Two provides full access to all the information
including topology information. This level requires more from the
programmer, more memory, and longer startup time. Without this level,
areas are not available.
The level of access is returned by Vect_open_old().
Example for sequential read access without topology:
\code
int main
{
int type, ltype;
struct Map_info Map;
struct line_pnts *Points;
struct line_cat *Cats;
const char *name, *mapset;
/* set open level to 1: no topology */
Vect_set_open_level(1);
if (Vect_open_old(&Map, name, mapset) < 1)
G_fatal_error(_("Failed to open vector '%s'"), name);
/* rewind vector file */
Vect_rewind(&Map);
Points = Vect_new_line_struct();
Cats = Vect_new_cats_struct();
while ((ltype = Vect_read_next_line(&Map, Points, Cats) > 0) {
/* check for desired type */
if (!(ltype & type))
continue;
/* process the feature */
}
exit(EXIT_SUCCESS);
}
\endcode
Example for random read access with topology:
\code
int main
{
int line, nlines, type, ltype;
struct Map_info Map;
struct line_pnts *Points;
struct line_cat *Cats;
const char *name, *mapset;
if (Vect_open_old(&Map, name, mapset) < 2)
G_fatal_error(_("Failed to open vector '%s'"), name);
Points = Vect_new_line_struct();
Cats = Vect_new_cats_struct();
nlines = Vect_get_num_lines(&Map);
for (line = 1; line <= nlines; line++) {
/* check for desired type */
if (!(Vect_get_line_type(&Map, line) & type))
continue;
Vect_read_line(&Map, points, cats, line);
/* process the feature */
}
exit(EXIT_SUCCESS);
}
\endcode
Example for working with areas (requires topology):
\code
int main
{
int area, nareas;
struct Map_info Map;
struct line_cat *Cats;
const char *name, *mapset;
if (Vect_open_old(&Map, name, mapset) < 2)
G_fatal_error(_("Failed to open vector '%s'"), name);
Points = Vect_new_line_struct();
Cats = Vect_new_cats_struct();
nareas = Vect_get_num_areas(&Map);
for (area = 1; area <= nareas; area++) {
/* process the area */
/* example: get area categories */
if (Vect_get_area_cats(&Map, area, Cats) == -1)
G_message(_("No category available for area %d"), area);
}
exit(EXIT_SUCCESS);
}
\endcode
Note: Higher level of access are planned, so when checking
success return codes for a particular level of access (when calling
Vect_open_old() for example), the programmer should use >= instead of
== for compatibility with future releases.
An existing vector map can be opened for reading by Vect_open_old().
A new vector map can be created (or open for writing) by
Vect_open_new(). Vect_open_old() attempts to open a vector map at the
highest possible level of access. It will return the number of the
level at which the map was opened. Vect_open_new() always opens at level 1
only. If you require that a vector map be opened at a lower level
(e.g. one), you can call the routine Vect_set_open_level(1);
Vect_open_old() will then either open at level one or fail. If you
instead require the highest level access possible, you should not use
Vect_set_open_level(), but instead check the return value of
Vect_open_old() to make sure it is greater than or equal to the lowest
level at which you need access. This allows for future levels to work
without need for module change.
\section vlibCategoriesLayers Categories and Layers
Note: "layer" was called "field" in earlier version.
In GRASS, a "category" or "category number" is a vector feature ID
used to link geometry to attributes which are stored in one or several
(external) database table(s). This category number is stored into the
vector geometry as well as a "cat" column (integer type) in each
attribute database table. The category number is used to lookup an
attribute assigned to a vector object. At user level, category numbers
can be assigned to vector objects with the v.category command.
In order to assign multiple attributes in different tables to vector
objects, each map can hold multiple category numbers. This is achieved
by assigning more than one "layer" to the map (v.db.connect
command). The layer number determines which table to be used for
attribute queries. For example, a cadastrial vector area map can be
assigned on layer 1 to an attribute table containing landuse
descriptions which are maintained by department A while layer 2 is
assigned to an attribute table containing owner descriptions which are
maintained by department B.
Each vector feature inside a vector map has zero, one or more
<layer,category> tuple(s). A user can (but not must) create
attribute tables which are referenced by the layer, and rows which are
essentially referenced by the <layer,category> pair.
%Categories start with 1 (category '0' is allowed for OGR
layers). %Categories do not have to be continuous.
Information about categories holds \ref line_cats data structure.
\section vlibAttributes Attributes
For a user-centric view about attribute management, see the explanations
in the GRASS GIS Wiki.
The attribute data are stored in external database. Connection with the
database is done through drivers based on \ref dbmilib. Records in a
table are linked to vector entities by layer and category number. The
layer identifies table and the category identifies record. I.e., for
any unique combination
\verbatim
map+mapset+layer+category
\endverbatim
there exists one unique combination
\verbatim
driver+database+table+row
\endverbatim
The general DBMI settings are defined in the '$MAPSET/VAR' text file
(maintained with db.connect command at user level).
Note: vector boundaries are (typically) handled without category since adjacent
parcels might have two different categories which prevents from a unique assignment.
\section vlibGeometry Vector library feature geometry
\subsection vlibFeatureTypes Feature types
Feature types are defined in include/vect_dig_defines.h, see the list below:
- GV_POINT
- GV_LINE
- GV_BOUNDARY
- GV_CENTROID
- GV_FACE
- GV_KERNEL
- GV_AREA
- GV_VOLUME
- GV_POINTS (GV_POINT | GV_CENTROID)
- GV_LINES (GV_LINE | GV_BOUNDARY)
Face and kernel are 3D equivalents of boundary and centroid, but there
is no support (yet) for 3D topology (volumes). Faces are used in a
couple of modules including NVIZ to visualize 3D buildings and other
volumetric figures.
\section vlibAuthors Authors
- Radim Blazek (vector architecture)
- Roberto Micarelli (DGLib)
Updates for GRASS 7:
- Markus Metz (file-based spatial index, vector topology)
- Martin Landa (GEOS support, direct OGR read access, PostgreSQL/PostGIS support)
\section vlibReferences References
Text based on: R. Blazek, M. Neteler, and R. Micarelli. The new GRASS 5.1
vector architecture. In Open source GIS - GRASS users conference 2002,
Trento, Italy, 11-13 September 2002. University of Trento, Italy, 2002.
http://www.ing.unitn.it/~grass/conferences/GRASS2002/proceedings/proceedings/pdfs/Blazek_Radim.pdf
\section vlibSeealso See Also
- \ref dbmilib
- \ref veditlib
*/