\documentclass[draft]{article} \usepackage{makeidx} %\title{\(\rightarrow\)DRAFT\(\leftarrow\)\\ %Goodness of Fit Techniques} \title{Goodness of Fit Tests\\ {\large Documentation on {\tt libcdhc.a}}\\ {\large and}\\ {\large A GRASS Tutorial on {\tt s.normal}}} \author{James Darrell McCauley\thanks{USDA National Needs Fellow, Department of Agricultural Enginering, Purdue University. Email: {\tt mccauley@ecn.purdue.edu}}} \makeindex \addtolength{\oddsidemargin}{-.55in} \addtolength{\evensidemargin}{-.55in} \addtolength{\textwidth}{.1in} \addtolength{\marginparwidth}{.45in} \addtolength{\topmargin}{-.25in} \addtolength{\textheight}{.5in} \def\libname{{\tt cdhc}} \def\returns#1{\sffamily\slshape Returns \(\mathsf{#1}\).} \def\function#1#2{\centerline{% \protect\index{#1} \framebox[.9\marginparwidth][l]{\vbox{\noindent\textsf{#2}}}} \vspace{.5\baselineskip}} %\def\function#1#2{\marginpar{% % \protect\index{#1} % \framebox[.9\marginparwidth][l]{\vbox{\textsf{#2}}}\hfill}} \newenvironment{example}{% \vspace{\baselineskip} \par\noindent\hrulefill\par \noindent{\em Example:}}{% \par\noindent\hrulefill\par \vspace{\baselineskip}} \begin{document} \bibliographystyle{plain} \maketitle \begin{abstract} The methods used by the GRASS program {\tt s.normal} are presented. These are various goodness of fit statistics for testing the null hypothesis of normality. Other additional tests found in \libname\, a C programming library, are also documented (this document serves two puposes: a tutorial for the GRASS geographic information system and documentation for the library). \end{abstract} \section{Introduction} This document is a programmer's manual for \libname, a C programming library useful for testing whether a sample is normally, lognormally, or exponentially distributed. Prototypes for library functions\footnote{% Each function in the library returns a pointer to static double. The \libname\ library was inspired by Johnson's STATLIB collection of FORTRAN routines for testing distribution assumptions~\protect\cite{johnson94}. Some functions in \libname\ are loosely based on Johnson's work (they have been completely rewritten, reducing memory requirements and number of computations and fixing a few bugs). Others are based on algorithms found in \emph{Applied Statistics}, \emph{Technometrics}, and other related journals.} are given in the margins near corresponding mathematical explanations. Hence, it is also a user's guide for programs using \libname. Readers should be equipped with at least one graduate course in probability and statistics. Much of the background and derivation/justification of each test has been omitted. A good text for more background information is {\em Goodness-of-Fit Techniques\/} by D'Agostino and Stephens~\cite{dagostino86b} (see also references in text). \subsection{Hypothesis Testing} Before beginning the description of the tests, a few definitions should be given. The general framework for mosts tests is that the {\em null\/} hypothesis \(H_0\) is that a random variable \(x\) follows a particular distribution \(F\left(x\right)\). Generally, the {\em alternative\/} hypothesis is that \(x\) does not follow \(F\left(x\right)\) (with no additional usuable information; the Kotz Separate Families test in \S\ref{sec:kotz} is one exception). This may differ from the way that some have learned hypothesis testing in that some tests are set up to reject the null hypothesis in favor of the alternative. A {\em simple\/} hypothesis implies that \(F\left(x\right)\) is completely specified, e.g., \(x\sim N\left(0,1\right)\). A {\em composite\/} hypothesis means that one (or more) of the parameters of \(F\left(x\right)\) is not completely specified, e.g., \(x\sim N\left(\mu,\sigma\right)\). That is, the composite hypothesis may be: \begin{displaymath} H_0 : F\left(x\right) = F_0\left(x; \theta\right) \end{displaymath} where \(\theta=\left[\theta_1, \ldots,\theta_p\right]'\) is a \(p\) vector of \emph{nuisance} parameters whose values are unknown and must be estimated from data. % Less is known % about the theory of this later % case, which is the most commonly encountered in practice. \subsection{Probability Plots} In addition to these analytical techniques, graphical methods are valuable supplements. The most important graphical technique is probability plotting. A \emph{probability plot} \label{pplot} is a plot of the cumulative distribution function \(F\left(x\right)\) on the vertical axis versus \(x\) on the horizontal axis. The vertical axis is scaled such that, if the data fit the assumed distribution, the resulting plot will lie on a straight line. Special plotting paper may be purchased to do these plots; however, most modern scientific plotting programs have this capability (e.g., {\tt gnuplot}). Each test presented below should be used in conjunction with a probability plot. \subsection{Shape of Distributions} Through much of the literature are references to Johnson curves: \(S_U\) or \(S_B\) (see \S\ref{sec:johnson-su}, page~\pageref{sec:johnson-su}). These refer to a system of distributions introduced by Johnson~\cite{johnson49} where a standard normal random variable \(Z\) is translated to \(\left(Z-\gamma\right)/\delta\) and transformed using \(T\): \begin{equation} Y=T\left(\frac{Z-\gamma}{\delta}\right). \end{equation} Three families in Johnson's~\cite{johnson49} system are: \begin{enumerate} \item a family of bounded distributions, denoted by \(S_B\), where: \begin{equation} Y=T\left( \frac{e^x}{1+e^x} \right); \end{equation} \item a family lognormal distributions where: \begin{equation} Y=T\left( e^x \right); \end{equation} \item and a family of unbounded distributions, denoted by \(S_U\), where: \begin{equation} Y=\sinh\left(x\right) = T\left( e^x-e^{-x} \right). \end{equation} \end{enumerate} In the \(S_B\) and \(S_U\) families, \(\gamma\) and \(\delta\) govern the shape of the distribution. In the lognormal families, \(\delta\) governs the shape while \(\gamma\) is only a scaling factor~\cite{hoaglin85c}. Other approaches to exploring the shape of a distribution include \(g\)- and \(h\)-distributions~\cite{hoaglin85c} and Pearson curves (see Bowman~\cite{bowman86}). \subsection{Miscellaneous} Many tests are presented here without mention of their relative merits. Users are advised to consult the cited literature to determine which test is appropriate for their situation. Sometimes a certain test will have more \emph{power} than another; that is, a test may have a better ability to reject a model when the model is incorrect. \section{Moments: \(b_2\) and \(\protect\sqrt{b_1}\)} \function{omnibus\_moments(x,n)} {double* \\ \hbox{omnibus\_moments(x,n)}\\ double *x;\\ int n;\\ \returns{\left[\sqrt{b_1},b_2\right]'}}% Let \(x_1, x_2, \ldots, x_n\) be the \(n\) observations with mean: \begin{equation} m_1 = \frac{1}{n}\sum_{j=1}{n} x_j. \end{equation} The central moments are defined as: \begin{equation} \label{eqn:moments} m_i = \frac{1}{n}\sum_{j=1}{n}\left( x_j - m_i\right)^i,\: i=2,3,4. \end{equation} The sample skewness \(\left(\sqrt{b_1}\right)\) and kurtosis \(\left(b_2\right)\) are defined as: \begin{equation} \sqrt{b_1} = m_3/m_2^{3/2} = \sqrt{n} \left(\sum_{j=1}^n\left(x_i-\bar{x}\right)^3\right)/ \left( \sum_{j=1}^n\left(x_i-\bar{x}\right)^2 \right)^{3/2} \end{equation} and \begin{equation} \label{eqn:4th-sample-moment} b_2 = m_4/m_2^2. \end{equation} These are invariant under both origin and scale changes~\cite{bowman86}. When a distribution is specified, these are denoted as \(\sqrt{\beta_1}\) and \(\beta_2\). For a standard normal, \(\sqrt{\beta_1}=0\) and \(\beta_2=3\). To use either or both of these statistics to test for departure from normality, these are sometimes transformed to their standardized to their normal equivalent deviates, \(X\left(\sqrt{b_1}\right)\) and \(X\left(b_1\right)\). For \(X\left(\sqrt{b_1}\right)\), D'Agostino and Pearson~\cite{dagostino73} gave coefficients \(\delta\) and \(\lambda\) (\(n=8\) to 1000) for: \begin{equation} X\left(\sqrt{b_1}\right) = \delta \sinh^{-1} \left(\sqrt{b_1}/\lambda\right) \end{equation} that transforms \(\sqrt{b_1}\) to a standard normal using a Johnson \(S_U\) approximation (Table~\ref{tbl:johnson}). \label{sec:johnson-su} An equivalent approximation~\cite{dagostino86} that avoids the use of tables is given by: \begin{enumerate} \item Compute \(\sqrt{b_1}\) from the sample data. \item Compute: \begin{eqnarray} Y &=& \sqrt{b_1} \left[\frac{\left(n+1\right)\left(n+3\right)} {6\left(n-2\right)}\right]^{\frac{1}{2}}, \\ \beta_2 &=& \frac{3\left(n^2+27n-70\right)\left(n+1\right)\left(n+3\right)} {\left(n-2\right)\left(n+5\right)\left(n+7\right)\left(n+9\right)},\\ W^2 &=& \sqrt{2\left(\beta_2-1\right)}-1, \\ \delta &=& 1/\sqrt{\log W}, \\ \mbox{and}\\ \alpha &=& \sqrt{2/\left(W^2-1\right)}. \end{eqnarray} \item Compute the standard normal variable: \begin{equation} Z = \delta \log\left[Y/\alpha + \sqrt{\left(Y/\alpha\right)^2+1}\,\right]. \end{equation} \end{enumerate} This procedure is applicable for \(n\ge8\). %D'Agostino~\cite{dagostino86} also notes %that the normal approximation given by %\begin{equation} %\sqrt{\beta_1}\left[\frac{\left(n+1\right)\left(n+3\right)} %{6\left(n-2\right)}\right]^{\frac{1}{2}} %\end{equation} %is valid for \(n\ge150\)~\cite{dagostino86}. \begin{example} For the sample data given in Table~\ref{tbl:pine} (\(n=584\)), \(\sqrt{b_1} = 0.2373\). Suppose that we wish to test the hypothesis of normality: \(H_0\): \(\sqrt{\beta_1}=0\) (normality) \noindent versus the two-sided alternative \(H_1\): \(\sqrt{\beta_1}\ne0\) (non-normality) \noindent at a level of significance of 0.05. Following the procedure given above, \(Y =2.3454\), \(\beta_2 = 3.0592\), \(W^2 = 1.0294\), \(\delta=12.6132\), \(\alpha=8.2522\), and \(Z=1.5367\). At a 0.05 significance level for a two-sided test, we reject the null hypothesis of normality if \(\left|Z\right|\ge1.96\). In this instance, we cannot reject \(H_0\). \end{example} The fourth standardized moment \(b_2\) may be used to test the normality hypothesis by the following procedure~\cite{anscombe63}: \begin{enumerate} \item Compute \(b_2\) from the sample data. \item Compute the mean and variance of \(b_2\): \begin{equation} E\left(b_2\right) = \frac{3\left(n-1\right)}{n+1} \end{equation} and \begin{equation} Var\left(b_2\right) = \frac{24n\left(n-2\right)\left(n-3\right)} {\left(n+1\right)^2\left(n+3\right)\left(n+5\right)}. \end{equation} \item Compute the standardized value of \(b_2\): \begin{equation} y = \frac{b_2-E\left(b_2\right)}{Var\left(b_2\right)}. \end{equation} \item Compute the third standardized moment of \(b_2\): \begin{equation} \sqrt{\beta_1\left(b_2\right)} = \frac{6\left(n^2-5n+2\right)}{\left(n+7\right)\left(n+9\right)} \sqrt{\frac{6\left(n+3\right)\left(n+5\right)} {n\left(n-2\right)\left(n-3\right)}}. \end{equation} \item Compute: \begin{equation} A=6+\frac{8}{\sqrt{\beta_1\left(b_2\right)}}\left[ \frac{2}{\sqrt{\beta_1\left(b_2\right)}} + \sqrt{1+\frac{4}{\sqrt{\beta_1\left(b_2\right)}}}\,\right]. \end{equation} \item Compute: \begin{equation} \label{eqn:z-b2} Z = \left(\left(1-\frac{2}{9A}\right)- \left[\frac{1-2/A}{1+y\sqrt{2/\left(A-4\right)}}\right]^{\frac{1}{3}}\right)/ \sqrt{2/\left(9A\right)} \end{equation} where \(Z\) is a standard normal variable with zero mean and variance of one. \end{enumerate} \begin{example} For the sample data given in Table~\ref{tbl:pine} (\(n=584\)), \(b_2 =1.9148\). Suppose that we wish to test the hypothesis of normality: \(H_0\): \(\beta_2=3\) (normality) \noindent versus the one-sided alternative \(H_1\): \(\beta_2>3\) (non-normality) \noindent at a level of significance of 0.05. We would reject \(H_0\) if \(Z\) (eqn.~\ref{eqn:z-b2}) is larger than 1.645 (Table~\ref{tbl:normal}). Following the procedure given above, \(E\left(b_2\right)=2.9897\), \(Var\left(b_2\right)=0.0401\), \(y=-26.8366\), \(\sqrt{\beta_1\left(b_2\right)}=0.0989\), \(A=2163\), and \(Z=-131.7\). Therefore, we cannot reject \(H_0\). \end{example} \subsection{Omnibus Tests for Normality} \section{Geary's Test of Normality} \label{sec:geary} \function{geary\_test(x,n)} {double*\\ \hbox{geary\_test(x,n)}\\ double *x;\\ int n;\\ \returns{\left[\sqrt{a},y\right]'}} Let \(x_1, x_2, \ldots, x_n\) be the \(n\) observations. The ratio of the mean deviation to the standard deviation is given as: \begin{equation}\label{eqn:geary} a = \frac{1}{n\sqrt{m_2}}\sum_{j=1}^n \left|x_i-\bar{x}\right| \end{equation} where \(\bar{x}=\sum_{i=1}^n x_i\) and \(m_2\) is defined by eqn.~\ref{eqn:moments}. This ratio can be transformed a standard normal~\cite{dagostino86} via \begin{equation}\label{eqn:geary-normal} y = \frac{\sqrt{n}\left(a-0.7979\right)}{0.2123}. \end{equation} This test is valid for \(n\ge41\). More generally, Geary~\cite{geary47} considered tests of the form \begin{equation} a\left(c\right) = \frac{1}{nm_2^{c/2}} \sum_{j=1}^n \left|x_i-\bar{x} \right|^c \: \mbox{for}\: c\ge1 \end{equation} where \(a\left(1\right)=a\) of eqn.~\ref{eqn:geary}, and \(a\left(4\right)=b_2\) of eqn.~\ref{eqn:4th-sample-moment}. D'Agostino and Rosman~\cite{dagostino74} conclude that Geary's \(a\) test has good power for symmetric alternatives and skewed alternatives with \(\beta_2 < 3\) when compared to other tests, though for symmetric alternatives, \(b_2\) (eqn.~\ref{eqn:4th-sample-moment}) can sometimes be more powerful and for skewed alternatives, \(W\) (eqn~\ref{eqn:w-test}) or \(W'\) (eqn~\ref{eqn:w-prime-test}) usually dominate \(a\). The Geary test (eqns.~\ref{eqn:geary}-\ref{eqn:geary-normal}) is seldom used today---D'Agostino~\cite{dagostino86} include it in his summary work because it is of ``historical interest.'' \begin{example} For the sample data given in Table~\ref{tbl:pine} (\(n=584\)), \(a = 0.8823\). Suppose that we wish to test the hypothesis of normality: \(H_0\): normality \noindent versus the two-sided alternative \(H_1\): non-normality \noindent at a level of significance of 0.05. From eqn.~\ref{eqn:geary-normal}, \(y=9.9607\). \end{example} \section{Extreme Normal Deviates} \label{sec:extreme} \function{extremes(x,n)} {double* \\ \hbox{extremes(x,n)}\\ double *x;\\ int n;\\ \returns{\left[x_n-\bar{x}, x_1-\bar{x}\right]'}} Let \(x_1 \le x_2 \le \cdots \le x_n\) be the \(n\) observations. Given a known normal deviation \(\sigma\), the largest and smallest deviation from a normal population may be computed: \begin{equation} u_n = \frac{x_n-\bar{x}}{\sigma} \end{equation} and \begin{equation} u_1 = -\frac{x_1-\bar{x}}{\sigma}, \end{equation} respectively. These statistics are potentially useful for detecting outliers for populations with a known \(\sigma\) but an unknown mean. Table 25 in Pearson and Hartley~\cite{pearson76} gives percentage points for this statistic. Pearson and Hartley~\cite{pearson76} also give examples of the use of extreme deviates when an estimator of \(\sigma\) (independent of the sample) is known and when a combined ``internal'' and ``external'' estimate is used. \section{EDF Statistics for Testing Normality} [Note: This section follows closely the presentation of Stephens~\cite{stephens86}.] Let \(x_1 \le x_2 \le \cdots \le x_n\) be the \(n\) observations. Suppose that the continuous distribution of \(x\) is \(F\left(x\right)\). The empirical distribution function (EDF) is \(F_n\left(x\right)\) defined by: \begin{equation} F_n\left(x\right) = \frac{1}{n}\left(\mbox{number of observations} \le x\right); \: -\infty < x < \infty \end{equation} or \begin{displaymath} \begin{array}{rclll} F_n\left(x\right)& = &0, & xF\left(x\right)\) as \(D^+\). Also, let \(D^-\) denote the largest vertical distance when \(F_n\left(x\right)W'_{0.05}\), we cannot reject \(H_0\). \end{example} \subsection{Weisberg-Bingham \(\tilde{W'}\)} \function{weisberg\_bingham(x,n)} {double* \\ \hbox{weisberg\_bingham(x,n)}\\ double *x;\\ int n;\\ \returns{\left[\tilde{W'},S^2\right]'}} An alternative way of computing \(b'\) is to note that the vector \(\left[b_1, b_2,\ldots,b_n\right]'\) is equivalent to \(m'/\left(m'm\right)^{1/2}\) where \( m' = \left(m_1, m_2, \ldots, m_n\right)\) denotes a vector of expected normal order statistics. One approximation for normal order statistics attributed to Blom~\cite{blom58} is: \begin{equation} E\left(r,n\right) = -\Phi^{-1}\left(\frac{r-\alpha}{n-2\alpha+1}\right) \end{equation} with a recommended ``compromise value \(\alpha=0.375\)~\cite{royston82c}.'' Define this new statistic as \(\tilde{W'}\). So, instead of hardcoding constants (as done in \S\ref{sec:shapiro-wilk}-\ref{sec:shapiro-francia}), this approximation is used. Since \(\tilde{W'}\) is essentially the same as \(W'\), the table of critical values for \(W'\) (Table~\ref{tbl:w-prime-test}) may be used. \subsection{D'Agostino's \(D\) Test of Normality} \label{sec:dagostino-d} \function{dagostino\_d(x,n)} {double* \\ \hbox{dagostino\_d(x,n)}\\ double *x;\\ int n;\\ \returns{\left[D,y\right]'}} D'Agostino~\cite{dagostino86} presents a modified Shapiro-Wilk \(W\) test that eliminates the need for a table of weights. The test statistic is given as \begin{eqnarray} D &=& T/\left(n^2\sqrt{m_2}\right) \\ \nonumber &=& T/\left(n^{3/2}\sqrt{\sum_{j=1}^n\left(x_j-\bar{x}\right)^2}\right) \end{eqnarray} where \begin{equation} T = \sum_{i=1}^n \left(i-\frac{1}{2}\left(n+1\right)\right)x_i. \end{equation} An approximate standard variable is \begin{equation} \label{eqn:xform-d} y=\frac{\sqrt{n}\left(D-0.28209479\right)}{0.02998598}. \end{equation} Significant values are given in Table~\ref{tbl:d-test}. \begin{example} For the sample data given in Table~\ref{tbl:pine} (\(n=584\)), \(D = 0.2859\) and \(y=3.0667\). Suppose that we wish to test the hypothesis of normality: \(H_0\): normality \noindent versus the two-sided alternative \(H_1\): non-normality \noindent at a level of significance of 0.005. From Table~\ref{tbl:d-test} (linearly interpolating), we reject \(H_0\) if \(y<-3.006\) or \(y>2.148\). Therefore, we cannot reject \(H_0\). \end{example} \subsection{Royston's Modification} \function{royston(x,n)} {double* \\ \hbox{royston(x,n)}\\ double *x;\\ int n;\\ \returns{\left[W, P\right]'}} Royston~\cite{royston82a} also presented a modified \(W\) statistic for \(n\) up to 2000 that did not require extensive use of tabulated constants. If \( m' = \left(m_1, m_2, \ldots, m_n\right)\) denotes a vector of expected values of standard normal order statistics and \(V=\left(v_{ij}\right)\) denote the corresponding \(n\times n\) covariance matrix, then \(W\) may be written as: \begin{equation} W=\left[\sum_{i=1}^n a_i x_{\left(i\right)}\right]^2/ \sum_{i=1}^n \left( x_{\left(i\right)} - \bar{x}\right)^2 \end{equation} where \begin{equation} a'=m'V^{-1}\left[\left(m'V^{-1}\right)\left(V^{-1} m' \right)\right]^{1/2}. \end{equation} Let \(a^* = m'V^{-1}\); The following approximation for \(a^*\) is used: \begin{equation} \label{eqn:astar} \hat{a}^* = \cases{ 2m_i, & i=2,3,\ldots,n-1\cr\cr \left(\frac{\hat{a}_1^2}{1-2\hat{a}_1^2} \sum_{i=2}^{n-1} \hat{a}_i^{*2}\right)^{1/2}, & i=1, i=n} \end{equation} where \begin{equation} \hat{a}_1^2=\hat{a}_n^2 = \cases{ g\left(n-1\right), n\le20\cr\cr g\left(n\right), n>20} \end{equation} and \begin{equation} g\left(n\right)=\frac{\Gamma\left(\frac{1}{2}\left[n+1\right]\right)} {\sqrt{2\Gamma\left(\frac{1}{2}n+1\right)}}. \end{equation} The function \(g\left(n\right)\) is approximated using: \begin{equation} \label{eqn:stirling} g\left(n\right)=\left[\frac{6n+7}{6n+13}\right] \left(\frac{\exp\left(1\right)}{n+2} \left[\frac{n+1}{n_2}\right]^{n-2}\right)^{1/2} \end{equation} Royston~\cite{royston82a} used eqns.~\ref{eqn:astar}--\ref{eqn:stirling} for the range \(7\le n\le2000\), but exact values of \(a_i\) for \(n<7\). Royston~\cite{royston82a} used the following normalizing transformation: \begin{equation} y=\left(1-W\right)^\lambda \end{equation} so that \begin{equation} z=\left[\left(1-W\right)^\lambda-\mu_y\right]/\sigma_y \end{equation} can be compared with the upper tail of a standard normal. Large values of \(z\) indicate non-normality of the original sample. This implementation in \libname\ closely follows Royston's published FORTRAN code~\cite{royston82b,royston82c}. It returns \(W\) and a corresponding \(P\) value (smallest level at which we could have preset \(\alpha\) and still have been able to reject \(H_0\)). It also utilizes algorithms by Hill~\cite{hill73} and Wichura~\cite{wichura88}. %\section{Modified Maximum Likelihood Ratio Test} % %If the third moment is less than zero: %\begin{equation} %\sum_i\left(x_i-\bar{x}\right) \le 0 %\end{equation} %then the distribution is normal. Otherwise, the test %statistic is: %\begin{equation} %\frac{\sqrt{\frac{1}{n}\sum_i\left(x_i-\sigma/n\right)^2}} % {\exp\left(\sigma/n\right) \sqrt{\frac{1}{n}\left(x_i-\bar{x}\right)^2}} %\end{equation} % %\function{mod\_maxlik\_ratio(x,n)} % {double* \\ % \hbox{mod\_maxlik\_ratio(x,n)}\\ % double *x;\\ % int n;\\ % \returns{?}} %\section{Coefficient of Variation Test} % %pages 424, 428, 435, 457 % %\begin{equation} %\sqrt{\exp\left(\frac{1}{n-1}\sqrt{\exp\left(\frac{1}{n-1}\sum_i %\left(\log x_i - \frac{1}{n}\sum_j x_j\right)^2\right)-1}\right)-1} %\end{equation} % %\function{coeff\_variation(x,n)} % {double* \\ % \hbox{coeff\_variation(x,n)}\\ % double *x;\\ % int n;\\ % \returns{?}} % \section{Kotz Separate Families \(T'_f\)} \label{sec:kotz} % move as subsection to EDF Stats? \function{kotz\_families(x,n)} {double* \\ \hbox{kotz\_families(x,n)}\\ double *x;\\ int n;\\ \returns{\left[T_f', T_f\right]'}} Kotz~\cite{kotz73} developed a test where the null hypothesis \(H_0\) is that the sample \(x_1, x_2, \ldots, x_n\) came from a lognormal distribution, and the alternate hypothesis is that the parent population was normal. The test statistic, given as: \begin{equation} T'_f = \frac{\log\frac{\hat{\beta}_2}{\beta_{2,\hat{\alpha}}}} {2\sqrt{n}\{\frac{1}{4}\left(e^{4\hat{\alpha}_2}+ 2e^{3\hat{\alpha}_2} -4\right) -\hat{\alpha}_2 - \frac{\hat{\alpha}_2\left(2e^{\hat{\alpha}_2}-1\right)^2} {2\left(2e^{\hat{\alpha}_2}-1\right)^2} +\frac{3}{4}e^{\hat{\alpha}_2}\}^{1/2}} \end{equation} is asymptotically normal~\cite{cox62}. \begin{example} For the sample data given in Table~\ref{tbl:pine} (\(n=584\)), \(T'_f = -0.6021\). Suppose that we wish to test the hypothesis \(H_0:\) lognormal \noindent versus \(H_1:\) normal \noindent at a level of significance of 0.05. We would reject \(H_0\) if \(T'_f\) is larger than 1.645. Therefore, we reject \(H_0\). \end{example} The discussion that follows explains in more detail how this statistic is calculated and how it was derived. The remainder of this section was taken directly from the work of Kotz~\cite{kotz73} (pages 123,124--126). \ldots\ A test for this special situation was considered by Roy~\cite{roy50}, where he bases his decision on the statistic \begin{equation} R=\frac{L_l}{L_n} \end{equation} where \(L_l\) denotes the likelihood of the sample under the lognormal hypothesis and \(L_n\) that under the normal hypothesis. If \(R>1\) one accepts lognormality, and if \(R<1\) normality is accepted. More recently Cox~\cite{cox61,cox62} has elaborated on Roy's heuristic approach, and has derived a general class of tests to discriminate between hypotheses that are {\em separate\/} (in the sense that an arbitrary simple hypothesis in \(H_0\) cannot be obtained as a limit---in the parameter space---of a simple hypothesis in \(H_1\). We will now apply Cox's general theory to testing lognormality against normality\ldots Suppose \(x_1, x_2, \ldots, x_n\) is a random sample from a certain population. The null hypothesis, \(H_f\), is that the p.d.f.\ of the \(x\)'s is log-normal and the alternate hypothesis, \(H_g\), is that the p.d.f.\ is normal, that is, for \(H_f\) \begin{equation} f\left(y,\beta\right) = \frac{1}{\sqrt{2\pi\beta}} \exp-\left(\frac{\left(\log y-\beta\right)^2}{2\beta}\right), \: -\infty < y< \infty. \end{equation} and for \(H_g\): \begin{equation} g\left(y,\alpha\right) = \frac{1}{y\sqrt{2\pi\alpha_2}} \exp-\left(\frac{\left(y-\alpha_1\right)^2}{2\alpha_2}\right), \: y>0. \end{equation} From the maximum likelihood equations we find that \begin{equation} \hat{\alpha}_1=\frac{1}{n}\sum\log x_i; \: \hat{\alpha}_2=\frac{1}{n}\sum\left(\log x_i-\hat{\alpha}_1\right), \end{equation} and analogous equations for \(\hat{\beta}_1\) and \(\hat{\beta}_2\). Under \(H_f\), the log-normal null hypothesis, as the sample size \(n\) increases to infinity, \(\hat{\alpha}_1\rightarrow\alpha_1\), \(\hat{\alpha}_2\rightarrow\alpha_2\), \(\hat{\beta}_{1,\alpha}\rightarrow\beta_{1,\alpha}\), and \(\hat{\beta}_{2,\alpha}\rightarrow\beta_{2,\alpha}\) where \begin{equation} \hat{\beta}_{1,\alpha}=\exp\left(\alpha_1+\frac{\alpha_2}{2}\right) \end{equation} and \begin{equation} \hat{\beta}_{2,\alpha}=\exp \left(2\alpha_1+\alpha_2\right) \left[\exp\left(\alpha_2\right) -1\right]. \end{equation} Cox's test is based on the log likelihood ratio \begin{equation} L_{fg}=\sum_{i=1}^n\log \frac{f\left(x_i,\hat{\alpha}\right)} {g\left(x_i,\hat{\beta}\right)} \end{equation} and his test statistic is given by \begin{equation} T_f=L_{fg}-E_{\hat{\alpha}}\left(L_{fg}\right) \end{equation} where \(E_{\hat{\alpha}}\left(L_{fg}\right)\) is the expected value under \(H_f\) when \(\alpha\) takes the value \(\hat\alpha\). Writing \begin{equation} F=\log f\left(x,\alpha\right), \: F_{\alpha_i} = \frac{\partial\log f\left(x,\alpha\right)}{\partial\alpha_i},\: i=1,2 \end{equation} \null\begin{equation} F_{\alpha_i\alpha_j} = \frac{\partial^2\log f\left(x,\alpha\right)} {\partial\alpha_i\partial\alpha_j}, \: G = \log g\left(x,\beta\right) \end{equation} \null\begin{equation} G_{\beta_i}=\frac{\partial\log g\left(x,\beta\right)}{\partial\beta_i}, \: \mbox{etc.,} \end{equation} Cox shows that \(T_f\) is asymptotically normal with zero mean and variance \begin{equation} V_\alpha\left(T_f\right)= nV_\alpha\left(F-G\right) - \sum\frac{C_\alpha^2\left(F-G, F_{\alpha_i}\right)} {V_\alpha\left(F_{\alpha_i}\right)} \end{equation} where \(V_\alpha\left(\cdot\right)\), \(C_\alpha\left(\cdot\right)\), denote variance and covariance under \(H_f\). In our case it can be shown that \begin{equation} T_f=\frac{n}{2}\log\frac{\hat{\beta}_2}{\hat{\beta}_{2,\hat{\alpha}}} \end{equation} Results of the following type are used in the derivation of \(V_\alpha\left(T_f\right)\): \begin{equation} E_\alpha\left[x^2\log x\right] = \left(\alpha_1+2\alpha_2\right)\exp\left(2\alpha_1+2\alpha_2\right) \end{equation} \null\begin{equation} E_\alpha\left[x^2\log^2x\right] = \left(\alpha_2+\alpha_1^2+4\alpha_1\alpha_2+4\alpha_2^2\right) \exp\left(2\alpha_1+2\alpha_2\right) \end{equation} \null\begin{equation} E_\alpha\left[\left(\log x\right)\left(\log x-\alpha\right)\right] = \alpha_2 \end{equation} \null\begin{equation} E_\alpha\left[\left(\log x\right)\left(\log x-\beta_1\right)^2\right] = \beta_2\left(\alpha_1+2\alpha_2\right) \end{equation} \null\begin{equation} E_\alpha\left[\left(\log x -\alpha_1\right) \left(\log x-\beta_1\right)^2\right] = 2\alpha_2\beta_2. \end{equation} Using these results, after a considerable amount of simplification, we get \begin{equation} V_\alpha\left(T_f\right)=n\left[ \frac{1}{4}\left(e^{4\alpha_2}+ 2e^{3\alpha_2}+ 3e^{\alpha_2}-4\right) \alpha_2- \frac{\alpha_2\left(2e^{\alpha_2}-1\right)^2} {2\left(2e^{\alpha_2}-1\right)^2}\right] \end{equation} Cox~\cite{cox62} has shown that \begin{equation} T'_f=\frac{T_f}{\sqrt{V_\alpha\left(T_f\right)}} \end{equation} is asymptotically standardized normal. In our case we get, after substituting the estimators for the parameters, \begin{equation} T'_f = \frac{\log\frac{\hat{\beta}_2}{\beta_{2,\hat{\alpha}}}} {2\sqrt{n}\{\frac{1}{4}\left(e^{4\hat{\alpha}_2}+ 2e^{3\hat{\alpha}_2} -4\right) -\hat{\alpha}_2 - \frac{\hat{\alpha}_2\left(2e^{\hat{\alpha}_2}-1\right)^2} {2\left(2e^{\hat{\alpha}_2}-1\right)^2} +\frac{3}{4}e^{\hat{\alpha}_2}\}^{1/2}} \end{equation} %\begin{equation} %T'_f = \frac{\log\frac{\hat{\beta}_2}{\beta_{2,\hat{\alpha}}}} %{2\sqrt{n}\{\frac{1}{4}\left(\exp\left({4\hat{\alpha}_2}\right)+ %2\exp\left({3\hat{\alpha}_2}\right) -4\right) -\hat{\alpha}_2 - %\frac{\hat{\alpha}_2\left(2\exp\left({\hat{\alpha}_2}\right)-1\right)^2} % {2\left(2\exp\left({\hat{\alpha}_2}\right)-1\right)^2} %+\frac{3}{4}\exp\left({\hat{\alpha}_2}\right)\}^{1/2}} %\end{equation} \section{Utility Functions} This section describes some useful functions included in \libname\ but not necessarily described in the previous sections, e.g., normal order statistics, normal probabilities, inverse normals. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \bibliography{goodness} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \clearpage \appendix \begin{table} \caption{Cumulative Standard Normal Distribution.} \label{tbl:normal} \centerline{Area Under the Normal Curve from} \begin{displaymath} -\infty\:\:\mbox{to}\:\:z=\frac{X_i-\mu}{\sigma}. \end{displaymath} \centerline{Computed by the author using algorithm 5666 for the error function, from Hart \emph{et al.}~\cite{hart68}.} \footnotesize \begin{center} \begin{tabular}{c% @{\extracolsep{4pt}}c% @{\extracolsep{4pt}}c% @{\extracolsep{4pt}}c% @{\extracolsep{4pt}}c% @{\extracolsep{4pt}}c% @{\extracolsep{4pt}}c% @{\extracolsep{4pt}}c% @{\extracolsep{4pt}}c% @{\extracolsep{4pt}}c% @{\extracolsep{4pt}}c% }\hline \(z\)& 0.00& 0.01 & 0.02 & 0.03 & 0.04 & 0.05 & 0.06 & 0.07 & 0.08 & 0.09\\ \hline 0.0&0.50000&0.50399&0.50798&0.51197&0.51595&0.51994&0.52392&0.52790&0.53188&0.53586\\ 0.1&0.53983&0.54380&0.54776&0.55172&0.55567&0.55962&0.56356&0.56749&0.57142&0.57535\\ 0.2&0.57926&0.58317&0.58706&0.59095&0.59483&0.59871&0.60257&0.60642&0.61026&0.61409\\ 0.3&0.61791&0.62172&0.62552&0.62930&0.63307&0.63683&0.64058&0.64431&0.64803&0.65173\\ 0.4&0.65542&0.65910&0.66276&0.66640&0.67003&0.67364&0.67724&0.68082&0.68439&0.68793\\ 0.5&0.69146&0.69497&0.69847&0.70194&0.70540&0.70884&0.71226&0.71566&0.71904&0.72240\\ 0.6&0.72575&0.72907&0.73237&0.73565&0.73891&0.74215&0.74537&0.74857&0.75175&0.75490\\ 0.7&0.75804&0.76115&0.76424&0.76730&0.77035&0.77337&0.77637&0.77935&0.78230&0.78524\\ 0.8&0.78814&0.79103&0.79389&0.79673&0.79955&0.80234&0.80511&0.80785&0.81057&0.81327\\ 0.9&0.81594&0.81859&0.82121&0.82381&0.82639&0.82894&0.83147&0.83398&0.83646&0.83891\\ 1.0&0.84134&0.84375&0.84614&0.84849&0.85083&0.85314&0.85543&0.85769&0.85993&0.86214\\ 1.1&0.86433&0.86650&0.86864&0.87076&0.87286&0.87493&0.87698&0.87900&0.88100&0.88298\\ 1.2&0.88493&0.88686&0.88877&0.89065&0.89251&0.89435&0.89617&0.89796&0.89973&0.90147\\ 1.3&0.90320&0.90490&0.90658&0.90824&0.90988&0.91149&0.91309&0.91466&0.91621&0.91774\\ 1.4&0.91924&0.92073&0.92220&0.92364&0.92507&0.92647&0.92785&0.92922&0.93056&0.93189\\ 1.5&0.93319&0.93448&0.93574&0.93699&0.93822&0.93943&0.94062&0.94179&0.94295&0.94408\\ 1.6&0.94520&0.94630&0.94738&0.94845&0.94950&0.95053&0.95154&0.95254&0.95352&0.95449\\ 1.7&0.95543&0.95637&0.95728&0.95818&0.95907&0.95994&0.96080&0.96164&0.96246&0.96327\\ 1.8&0.96407&0.96485&0.96562&0.96638&0.96712&0.96784&0.96856&0.96926&0.96995&0.97062\\ 1.9&0.97128&0.97193&0.97257&0.97320&0.97381&0.97441&0.97500&0.97558&0.97615&0.97670\\ 2.0&0.97725&0.97778&0.97831&0.97882&0.97932&0.97982&0.98030&0.98077&0.98124&0.98169\\ 2.1&0.98214&0.98257&0.98300&0.98341&0.98382&0.98422&0.98461&0.98500&0.98537&0.98574\\ 2.2&0.98610&0.98645&0.98679&0.98713&0.98745&0.98778&0.98809&0.98840&0.98870&0.98899\\ 2.3&0.98928&0.98956&0.98983&0.99010&0.99036&0.99061&0.99086&0.99111&0.99134&0.99158\\ 2.4&0.99180&0.99202&0.99224&0.99245&0.99266&0.99286&0.99305&0.99324&0.99343&0.99361\\ 2.5&0.99379&0.99396&0.99413&0.99430&0.99446&0.99461&0.99477&0.99492&0.99506&0.99520\\ 2.6&0.99534&0.99547&0.99560&0.99573&0.99585&0.99598&0.99609&0.99621&0.99632&0.99643\\ 2.7&0.99653&0.99664&0.99674&0.99683&0.99693&0.99702&0.99711&0.99720&0.99728&0.99736\\ 2.8&0.99744&0.99752&0.99760&0.99767&0.99774&0.99781&0.99788&0.99795&0.99801&0.99807\\ 2.9&0.99813&0.99819&0.99825&0.99831&0.99836&0.99841&0.99846&0.99851&0.99856&0.99861\\ 3.0&0.99865&0.99869&0.99874&0.99878&0.99882&0.99886&0.99889&0.99893&0.99896&0.99900\\ 3.1&0.99903&0.99906&0.99910&0.99913&0.99916&0.99918&0.99921&0.99924&0.99926&0.99929\\ 3.2&0.99931&0.99934&0.99936&0.99938&0.99940&0.99942&0.99944&0.99946&0.99948&0.99950\\ 3.3&0.99952&0.99953&0.99955&0.99957&0.99958&0.99960&0.99961&0.99962&0.99964&0.99965\\ 3.4&0.99966&0.99968&0.99969&0.99970&0.99971&0.99972&0.99973&0.99974&0.99975&0.99976\\ 3.5&0.99977&0.99978&0.99978&0.99979&0.99980&0.99981&0.99981&0.99982&0.99983&0.99983\\\hline \end{tabular} \end{center} \normalsize \end{table} \clearpage \begin{table} \caption{Cumulative Chi-Square Distribution.} \label{tbl:chisq} Computed by the author using CDFLIB~\cite{brown93}, with the exception of items marked with a dagger (\dag), which were found in {\em Biometrika Tables for Statisticians} (1966), 3rd.~Ed., University College, London, as cited by Shapiro~\cite{shapiro90}. \scriptsize \begin{center} \begin{tabular}{r% r@{.}l% @{\extracolsep{1.0pt}}r@{.}l% @{\extracolsep{1.0pt}}r@{.}l% @{\extracolsep{1.0pt}}r@{.}l% @{\extracolsep{1.0pt}}r@{.}l% @{\extracolsep{1.0pt}}r@{.}l% @{\extracolsep{1.0pt}}r@{.}l% @{\extracolsep{1.0pt}}r@{.}l% @{\extracolsep{1.0pt}}r@{.}l% @{\extracolsep{1.0pt}}r@{.}l% @{\extracolsep{1.0pt}} } \hline & \multicolumn{20}{c}{\(\alpha\)} \\ \cline{2-21} \(\nu\) & 0&995 & 0&990 & 0&975 & 0&950 & 0&900 & 0&100 & 0&050 & 0&025 & 0&010 & 0&005\\ \hline 1 & 0&\(0000393^{\dag}\) & 0&\(000157^{\dag}\) & 0&\(000982^{\dag}\) & 0&\(0158^{\dag}\) & 0&\(102^{\dag}\) & 2&71 & 3&84 & 5&02 & 6&63 & 7&88 \\ 2 & 0&0100 & 0&0201& 0&0506& 0&103 & 0&211 &4&61 & 5&99 & 7&38 & 9&21 & 10&6 \\ 3 & 0&0717 & 0&115 & 0&216 & 0&352 & 0&584 &6&25 & 7&81 & 9&35 &11&3 & 12&8 \\ 4 & 0&207 & 0&297 & 0&484 & 0&711 & 1&06 &7&78 & 9&49 &11&1 &13&3 & 14&9 \\ 5 & 0&412 & 0&554 & 0&831 & 1&15 & 1&61 &9&24 &11&1 &12&8 &15&1 & 16&8 \\ \\ 6 & 0&676 &0&872 & 1&24 & 1&64 & 2&20 & 10&6 & 12&6 & 14&5& 16&8& 18&5 \\ 7 & 0&989 & 1&24 & 1&69 & 2&17 & 2&83 & 12&0 & 14&1 & 16&0& 18&5& 20&3 \\ 8 & 1&34 & 1&65 & 2&18 & 2&73 & 3&49 & 13&4 & 15&5 & 17&5 & 20&1 & 22&0 \\ 9 & 1&73 & 2&09 & 2&70 & 3&33 & 4&17 & 14&7 & 16&9 & 19&0 & 21&7 & 23&6 \\ 10 & 2&16 & 2&56 & 3&25 & 3&94 & 4&87 & 16&0 & 18&3 & 20&5 & 23&2 & 25&2 \\ \\ 11 & 2&60 & 3&05 & 3&82 & 4&57 & 5&58 & 17&3 & 19&7 & 21&9 & 24&7 & 26&8 \\ 12 & 3&07 & 3&57 & 4&40 & 5&23 & 6&30 & 18&6 & 21&0 & 23&3 & 26&2 & 28&3 \\ 13 & 3&57 & 4&11 & 5&01 & 5&89 & 7&04 & 19&8 & 22&4 & 24&7 & 27&7 & 29&8 \\ 14 & 4&07 & 4&66 & 5&63 & 6&57 & 7&79 & 21&1 & 23&7 & 26&1 & 29&1 & 31&3 \\ 15 & 4&60 & 5&23 & 6&26 & 7&26 & 8&55 & 22&3 & 25&0 & 27&5 & 30&6 & 32&8 \\ \\ 16 & 5&14 & 5&81 & 6&91 & 7&96 & 9&31 & 23&5 & 26&3 & 28&9 & 32&0 & 34&3 \\ 17 & 5&70 & 6&41 & 7&56 & 8&67 & 10&1 & 24&8 & 27&6 & 30&2 & 33&4 & 35&7 \\ 18 & 6&26 & 7&01 & 8&23 & 9&39 & 10&9 & 26&0 & 28&9 & 31&5 & 34&8 & 37&2 \\ 19 & 6&84 & 7&63 & 8&91 & 10&1 & 11&7 & 27&2 & 30&1 & 32&9 & 36&2 & 38&6 \\ 20 & 7&43 & 8&26 & 9&59 & 10&9 & 12&4 & 28&4 & 31&4 & 34&2 & 37&6 & 40&0 \\ \\ 21 & 8&03 & 8&90 & 10&3 & 11&6 & 13&2 & 29&6 & 32&7 & 35&5 & 38&9 & 41&4 \\ 22 & 8&64 & 9&54 & 11&0 & 12&3 & 14&0 & 30&8 & 33&9 & 36&8 & 40&3 & 42&8 \\ 23 & 9&26 & 10&2 & 11&7 & 13&1 & 14&9 & 32&0 & 35&1 & 38&0 & 41&6 & 44&2 \\ 24 & 9&89 & 10&9 & 12&4 & 13&9 & 15&7 & 33&2 & 36&4 & 39&4 & 43&0 & 45&6 \\ 25 & 10&5 & 11&5 & 13&1 & 14&6 & 16&5 & 34&4 & 37&7 & 40&6 & 44&3 & 46&9 \\ \\ 26 & 11&2 & 12&2 & 13&8 & 15&4 & 17&3 & 35&6 & 38&9 & 41&9 & 45&6 & 48&3 \\ 27 & 11&8 & 12&9 & 14&6 & 16&2 & 18&1 & 36&7 & 40&1 & 43&2 & 47&0 & 49&6 \\ 28 & 12&5 & 13&6 & 15&3 & 16&9 & 18&9 & 37&9 & 41&3 & 44&5 & 48&3 & 51&0 \\ 29 & 13&1 & 14&3 & 16&0 & 17&7 & 19&8 & 39&1 & 42&6 & 45&7 & 49&6 & 52&3 \\ 30 & 13&8 & 15&0 & 16&8 & 18&5 & 20&6 & 40&3 & 43&8 & 47&0 & 50&9 & 53&7 \\ \hline \end{tabular} \end{center} \normalsize According to Shapiro~\cite{shapiro90}, for situations with larger than 30 degrees of freedom, \(\chi^2_{\nu,\alpha} = 0.5 \left(z_{\alpha}+\sqrt{2\nu-1}\right)^2\), where \(z_{\alpha}\) is the 100\(\alpha\)\% point of the standard normal distribution, e.g., \(z_{0.05}=-1.645\) from Table~\ref{tbl:normal}. \end{table} \clearpage \begin{table} \caption{Signficant Values of D'Agostino's D Test (\(y\) statistic of eqn.~\protect\ref{eqn:xform-d}).} \centerline{Reproduced from D'Agostino~\protect\cite{dagostino86}.} \label{tbl:d-test} \scriptsize \begin{center} \begin{tabular}{rllllllllll}\hline & \multicolumn{10}{c}{Percentiles} \\ \cline{2-11} n & 0.5 & 1.0 & 2.5 & 5 & 10 & 90 & 95 & 97.5 & 99 & 99.5 \\ \hline 10&-4.66&-4.06&-3.25&-2.62&-1.99&0.149&0.235&0.299&0.356&0.385\\ 12&-4.63&-4.02&-3.20&-2.58&-1.94&0.237&0.329&0.381&0.440&0.479\\ 14&-4.57&-3.97&-3.16&-2.53&-1.90&0.308&0.399&0.460&0.515&0.555\\ 16&-4.52&-3.92&-3.12&-2.50&-1.87&0.367&0.459&0.526&0.587&0.613\\ 18&-4.47&-3.87&-3.08&-2.47&-1.85&0.417&0.515&0.574&0.636&0.667\\ 20&-4.41&-3.83&-3.04&-2.44&-1.82&0.460&0.565&0.628&0.690&0.720\\ \\ 22&-4.36&-3.78&-3.01&-2.41&-1.81&0.497&0.609&0.677&0.744&0.775\\ 24&-4.32&-3.75&-2.98&-2.39&-1.79&0.530&0.648&0.720&0.783&0.822\\ 26&-4.27&-3.71&-2.96&-2.37&-1.77&0.559&0.682&0.760&0.827&0.867\\ 28&-4.23&-3.68&-2.93&-2.35&-1.76&0.586&0.714&0.797&0.868&0.910\\ 30&-4.19&-3.64&-.291&-2.33&-1.75&0.610&0.743&0.830&0.906&0.941\\ \\ 32&-4.16&-3.61&-2.88&-2.32&-1.73&0.631&0.770&0.862&0.942&0.983\\ 34&-4.12&-3.59&-2.86&-2.30&-1.72&0.651&0.794&0.891&0.975&1.02\\ 36&-4.09&-3.56&-2.85&-2.29&-1.71&0.669&0.816&0.917&1.00&1.05\\ 38&-4.06&-3.54&-2.83&-2.28&-1.70&0.686&0.837&0.941&1.03&1.08\\ 40&-4.03&-3.51&-2.81&-2.26&-1.70&0.702&0.857&0.964&1.06&1.11\\ \\ 42&-4.00&-3.49&-2.80&-2.25&-1.69&0.716&0.875&0.986&1.09&1.14\\ 44&-3.98&-3.47&-2.78&-2.24&-1.68&0.730&0.892&1.01&1.11&1.17\\ 46&-3.95&-3.45&-2.77&-2.23&-1.67&0.742&0.908&1.02&1.13&1.19\\ 48&-3.93&-3.43&-2.75&-2.22&-1.67&0.754&0.923&1.04&1.15&1.22\\ 50&-3.91&-3.41&-2.74&-2.21&-1.66&0.765&0.937&1.06&1.18&1.24\\ \\ 60&-3.81&-3.34&-2.68&-2.17&-1.64&0.812&0.997&1.13&1.26&1.34\\ 70&-3.73&-3.27&-2.64&-2.14&-1.61&0.849&1.05&1.19&1.33&1.42\\ 80&-3.67&-3.22&-2.60&-2.11&-1.59&0.878&1.08&1.24&1.39&1.48\\ 90&-3.61&-3.17&-2.57&-2.09&-1.58&0.902&1.12&1.28&1.44&1.54\\ 100&-3.57&-3.14&-2.54&-2.07&-1.57&0.923&1.14&1.31&1.48&1.59\\ \\ 150&-3.409&-3.009&-2.452&-2.004&-1.520&0.990&1.233&1.423&1.623&1.746\\ 200&-3.302&-2.922&-2.391&-1.960&-1.491&1.032&1.290&1.496&1.715&1.853\\ 250&-3.227&-2.861&-2.348&-1.926&-1.471&1.060&1.328&1.545&1.779&1.927\\ 300&-3.172&-2.816&-2.316&01.906&-1.456&1.080&1.357&1.528&1.826&1.983\\ 350&-3.129&-2.781&-2.291&-1.888&-1.444&1.096&1.379&1.610&1.863&2.026\\ \\ 400&-3.094&-2.753&-2.270&-1.873&-1.434&1.108&1.396&1.633&1.893&2.061\\ 450&-3.064&-2.729&-2.253&-1.861&-1.426&1.119&1.411&1.652&1.918&2.090\\ 500&-3.040&-2.709&-2.239&-1.850&-1.419&1.127&1.423&1.668&1.938&2.114\\ 550&-3.019&-2.691&-2.226&-1.841&-1.413&1.135&1.434&1.682&1.957&2.136\\ 600&-3.000&-2.676&-2.215&-1.833&-1.408&1.141&1.443&1.694&1.972&2.154\\ \\ 650&-2.984&-2.663&-2.206&-1.826&-1.403&1.147&1.451&1.704&1.986&2.171\\ 700&-2.969&-2.651&-2.197&-1.820&-1.399&1.152&1.458&1.714&1.999&2.185\\ 750&-2.956&-2.640&-2.189&-1.814&-1.395&1.157&1.465&1.722&2.010&2.199\\ 800&-2.944&-2.630&-2.182&-1.809&-1.392&1.161&1.471&1.730&2.020&2.221\\ 850&-2.933&-2.621&-2.176&-1.804&-1.389&1.165&1.476&1.737&2.029&2.221\\ \\ 900&-2.923&-2.613&-2.710&-1.800&-1.386&1.168&1.481&1.743&2.037&2.231\\ 950&-2.914&-2.605&-2.164&-1.796&-1.383&1.171&1.485&1.749&2.045&2.241\\ 1000&-2.906&-2.599&-2.159&-1.792&-1.381&1.174&1.489&1.754&2.052&2.249\\ 1500&-2.845&-2.549&-2.123&-1.765&-1.363&1.194&1.519&1.793&2.103&2.309\\ 2000&-2.807&-2.515&-2.101&-1.750&-1.353&1.207&1.536&1.815&2.132&2.342\\ \hline \end{tabular} \end{center} \end{table} \clearpage \begin{table} \caption{Sample Data. Diameters at Breast Height (cm) of 584 Longleaf Pine Trees.} \label{tbl:pine} Locations and Diameters at Breast Height (dbh, in centimeters) of all 584 Longleaf Pine Trees in the 4 hectare Study Region. The \(x\) coordinates are distances (in meters) from the tree to the southern boundary. The \(y\) coordinates are distances (in meters) from the tree to the eastern boundary. Reproduced from Table~8.1 of Cressie~\protect\cite{cressie91}. \scriptsize \begin{center} \begin{tabular}{rrrrrrrrrrrr} \hline \(x\)&\(y\)& dbh &\(x\)&\(y\)& dbh &\(x\)&\(y\)& dbh &\(x\)&\(y\)& dbh \\ \hline 200.0& 8.8& 32.9&199.3& 10.0& 53.5&193.6& 22.4& 68.0&167.7& 35.6& 17.7\\ 183.9& 45.4& 36.9&182.5& 47.2& 51.6&166.1& 48.8& 66.4&160.7& 42.4& 17.7\\ 162.9& 29.0& 21.9&166.4& 33.6& 25.7&163.0& 35.8& 25.5&156.1& 38.7& 28.3\\ 157.6& 42.8& 11.2&154.4& 36.2& 33.8&150.8& 45.8& 2.5&144.6& 25.4& 4.2\\ 142.7& 25.4& 2.5&144.0& 28.3& 31.2&143.5& 36.9& 16.4&123.1& 14.3& 53.2\\ 113.9& 13.1& 67.3&114.9& 8.1& 37.8&101.4& 9.3& 49.9&105.7& 9.1& 46.3\\ 106.9& 14.7& 40.5&127.0& 29.7& 57.7&129.8& 45.8& 58.0&136.3& 44.2& 54.9\\ 106.7& 49.4& 25.3&103.4& 49.6& 18.4& 89.7& 4.9& 72.0& 10.8& 0.0& 31.4\\ 26.4& 5.4& 55.1& 11.0& 5.5& 36.0& 5.1& 3.9& 28.4& 10.1& 8.5& 24.8\\ 18.9& 11.3& 44.1& 28.4& 11.0& 50.9& 41.1& 9.2& 47.5& 41.2& 12.6& 58.0\\ \\ 33.9& 21.4& 36.9& 40.8& 39.8& 65.6& 49.7& 18.2& 52.9& 6.7& 46.9& 39.5\\ 11.6& 46.9& 42.7& 17.2& 47.9& 44.4& 19.4& 50.0& 40.3& 26.9& 47.2& 53.5\\ 39.6& 47.9& 44.2& 38.0& 50.7& 53.8& 19.1& 45.2& 38.0& 32.1& 35.0& 48.3\\ 28.4& 35.5& 42.9& 3.8& 44.8& 40.6& 8.5& 43.4& 34.5& 11.2& 40.2& 45.7\\ 22.4& 34.3& 51.8& 23.8& 33.3& 52.0& 24.9& 29.8& 44.5& 9.0& 38.9& 35.6\\ 10.4& 61.2& 19.2& 30.9& 52.2& 43.5& 48.9& 67.8& 33.7& 49.5& 73.8& 43.3\\ 46.3& 80.9& 36.6& 44.1& 78.0& 46.3& 48.5& 94.8& 48.3& 45.9& 90.4& 20.4\\ 44.2& 84.0& 40.5& 37.0& 64.3& 44.0& 36.3& 67.7& 40.9& 36.7& 71.5& 51.0\\ 35.3& 78.3& 36.5& 33.5& 81.6& 42.1& 29.3& 83.8& 15.6& 22.4& 84.1& 18.5\\ 17.1& 84.7& 43.0& 27.3& 89.4& 28.9& 27.9& 90.6& 21.3& 48.4& 99.5& 30.9\\ 43.6& 98.4& 42.7& 39.0& 97.3& 37.6& 14.9& 91.2& 47.1& 6.1& 96.2& 44.6\\ 10.7& 98.6& 44.3& 22.2&100.0& 26.1\\ & & & & & & 32.7& 99.1& 25.9& 0.9&100.0& 41.4\\ 93.5& 96.2& 59.5& 85.1& 90.6& 26.1& 92.8& 61.5& 11.4& 91.3& 69.5& 33.4\\ 95.9& 59.7& 35.8& 93.4& 71.5& 54.4& 89.6& 86.3& 33.6& 99.5& 78.9& 35.5\\ 100.6& 53.1& 7.4&103.5& 72.1& 36.6&104.7& 74.0& 19.1&104.0& 67.1& 34.9\\ 104.2& 64.7& 37.3&105.0& 59.8& 16.3&111.8& 73.2& 39.1&112.4& 69.8& 36.5\\ 110.0& 65.9& 25.0&120.4& 79.2& 46.8&109.4& 62.5& 18.7&109.7& 62.9& 23.2\\ 113.3& 60.4& 20.4&118.0& 69.3& 42.3&126.5& 69.2& 38.1&125.1& 68.2& 17.9\\ 114.2& 54.6& 39.7&110.6& 51.5& 14.5&147.3& 73.8& 33.5&146.7& 73.0& 56.0\\ 148.1& 86.2& 66.1&138.2& 73.4& 26.3&135.7& 70.7& 44.8&134.9& 72.7& 24.2\\ 98.0& 27.7& 39.0& 93.5& 28.7& 15.1& 82.3& 16.8& 35.6& 79.2& 25.3& 21.6\\ 84.2& 29.0& 17.2& 88.8& 35.1& 22.3& 82.5& 36.3& 18.2& 75.6& 28.1& 55.6\\ 72.9& 36.2& 23.2& 79.1& 43.6& 27.0& 50.0& 48.8& 50.1& 59.9& 34.4& 45.5\\ 60.5& 13.0& 47.2& 60.2& 11.4& 37.8& 66.5& 15.9& 31.9& 70.4& 6.6& 38.5\\ 70.7& 2.2& 23.8& 71.7& 1.9& 46.3&179.5& 92.6& 2.8&186.1& 91.0& 3.2\\ 178.3& 92.4& 5.8&178.6& 91.8& 3.5&186.2& 90.3& 2.3&185.2& 89.9& 3.8\\ 185.5& 89.8& 3.2&185.8& 89.1& 4.4&186.5& 88.8& 3.9&176.7& 92.3& 7.8\\ 177.7& 91.5& 4.7&184.0& 89.0& 4.8& 11.0& 34.4& 44.1& 17.5& 21.9& 51.5\\ 4.3& 31.3& 51.6& 5.9& 8.1& 33.3& 1.9& 68.5& 13.3& 1.8& 71.0& 5.7\\ 1.1& 82.5& 3.3& 2.4& 95.3& 45.9& 4.6& 94.0& 32.6& 3.1& 79.5& 11.4\\ 3.9& 72.1& 9.1& 4.1& 70.9& 5.2& 7.9& 68.7& 4.9& 14.8& 81.8& 42.0\\ 9.4& 67.7& 32.0& 15.9& 78.7& 32.8& 16.6& 78.8& 22.0& 18.2& 80.3& 20.8\\ 174.1&135.6& 7.3&173.0&127.4& 3.0&174.0&125.7& 2.2&177.3&121.0& 2.2\\ 177.6&120.3& 2.2&195.7&144.1& 59.4&197.0&142.5& 48.1&178.2&112.6& 51.5\\ 173.8&112.7& 50.3&172.8&124.4& 2.9&162.7&114.6& 19.1&164.6&120.9& 15.1\\ 80.4& 90.7& 21.7& 71.0& 88.8& 42.4& 73.0& 85.6& 40.2& 56.7& 95.3& 37.4\\ 66.5& 86.2& 40.1& 67.0& 84.7& 39.5& 62.9& 87.9& 32.5& 61.8& 89.0& 39.5\\ 51.9& 94.5& 35.6& 60.9& 71.6& 44.1& 61.0& 69.8& 42.2& 61.7& 66.2& 39.4\\ 57.3& 68.4& 35.5& 54.2& 76.4& 39.1& 76.1& 52.9& 9.5& 67.2& 57.6& 48.4\\ 81.9& 58.5& 31.9& 90.1& 59.6& 30.7&135.3&126.6& 15.0&135.0&124.0& 24.5\\ \hline \end{tabular} \end{center} \end{table} \clearpage \scriptsize \begin{center} {\normalsize Table~\thetable (continued).} \par\vspace{\baselineskip}\par \begin{tabular}{rrrrrrrrrrrr} \hline \(x\)&\(y\)& dbh &\(x\)&\(y\)& dbh &\(x\)&\(y\)& dbh &\(x\)&\(y\)& dbh \\ \hline 136.2&122.1& 15.0&129.7&127.0& 22.2&134.8&120.2& 27.5&136.9&116.8& 10.8\\ 137.0&116.0& 26.2&128.9&124.2& 10.2&127.5&125.0& 18.9&127.6&121.7& 44.2\\ 129.7&119.0& 13.8&126.6&121.1& 16.7&133.4& 77.1& 35.7&129.9& 76.1& 12.1\\ 126.5& 77.3& 35.4&129.1& 83.1& 32.7&134.4& 87.0& 30.1&130.7& 90.1& 28.4\\ 130.9& 90.7& 16.5&132.0& 94.5& 12.7&136.8& 96.7& 5.5&137.7& 98.0& 2.5\\ 157.8& 99.9& 3.0&187.1& 98.1& 3.2&190.6& 92.1& 3.2&185.4& 93.1& 4.0\\ 186.6& 92.2& 3.6&185.9& 91.7& 3.8&184.3& 92.1& 4.3&188.2& 91.2& 3.3\\ 104.4&145.1& 6.3&104.9&145.0& 18.4&101.5&148.4& 5.4&102.4&148.7& 5.4\\ 123.4&128.9& 26.0&123.8&135.1& 22.3&127.0&133.8& 35.2&109.6&145.9& 24.1\\ 112.4&145.0& 6.9&133.1&144.8& 61.0&139.4&143.1& 20.6&140.4&143.6& 6.5\\ 184.1& 88.2& 2.8&183.5& 88.5& 4.8&183.0& 88.0& 5.4&176.1& 91.0& 4.3\\ 175.6& 90.2& 4.0&173.8& 89.9& 3.2&164.9& 93.7& 2.8&163.0& 95.3& 4.9\\ 163.2& 94.1& 3.5&162.4& 94.5& 2.9&161.5& 94.9& 2.4&162.2& 94.3& 3.3\\ 161.0& 94.7& 2.1&157.7& 95.7& 2.0&154.9& 96.2& 3.9&154.6& 92.7& 5.0\\ 152.9& 93.7& 2.3&153.2& 93.2& 2.2&168.2& 73.0& 67.7&151.6& 93.0& 2.9\\ 151.4& 93.4& 2.4&157.6& 67.2& 56.3&149.4& 63.0& 39.4&149.4& 64.3& 59.5\\ 167.3& 54.6& 42.4&157.4& 51.5& 63.7&181.5& 66.1& 66.6&196.5& 55.2& 69.3\\ 189.9& 85.2& 56.9&155.1&149.2& 23.5&154.5&148.4& 9.1&162.9&119.9& 29.9\\ 158.4&113.4& 14.9&153.9&108.3& 38.7&156.1&116.0& 31.5&156.5&118.9& 27.8\\ 156.8&122.3& 28.5&159.0&126.1& 21.6&161.0&131.9& 2.0&161.3&132.8& 2.6\\ 160.6&132.6& 2.3&161.3&134.9& 3.5&159.7&129.8& 3.6&161.7&136.1& 2.6\\ 161.1&136.4& 2.0&160.1&133.0& 2.0&159.0&133.6& 2.7&160.0&134.8& 2.6\\ 160.2&135.5& 2.2&159.1&136.5& 2.7&154.7&126.8& 30.1&151.9&127.5& 16.6\\ 151.3&124.7& 10.4&151.0&127.3& 11.8&150.4&123.0& 32.3&149.6&124.6& 33.5\\ 146.2&127.1& 30.5&146.1&127.4& 10.5&144.4&131.8& 13.8&143.3&131.5& 22.8\\ 140.6&137.7& 31.7&143.2&125.4& 10.1&127.1&119.9& 14.5&120.7&115.6& 12.0\\ 115.3&112.6& 2.2&134.1&105.2& 2.3&134.6&104.1& 3.2&135.6&103.3& 3.0\\ 128.9&102.6& 50.6&116.3&106.5& 2.6&104.3&104.0& 50.0&111.5&100.0& 52.2\\ 100.5&149.7& 5.2&100.0&145.5& 5.2&100.8&145.0& 6.7&100.9&143.5& 14.0\\ 100.3&140.8& 12.7&101.5&120.8& 59.5& 99.3&110.6& 52.0& 99.2&106.0& 45.9\\ 102.0&137.1& 18.0&105.4&115.7& 43.5&103.6&134.2& 3.3&103.9&139.4& 4.3\\ 102.6&141.6& 7.4&102.0&143.3& 10.1&102.1&144.4& 23.1&103.5&141.3& 8.1\\ 102.9&143.8& 5.7&105.7&138.2& 13.3&106.6&135.1& 12.8&108.5&133.2& 11.6\\ 105.2&142.3& 6.3&139.7&145.8& 20.0&145.5&148.4& 8.9&146.4&148.4& 27.6\\ 105.8&149.8& 4.5& 96.7&149.1& 9.2& 66.5&150.0& 2.3& 55.7&148.5& 5.0\\ 54.7&146.8& 4.0& 57.1&144.0& 21.8& 61.7&145.3& 10.9& 60.1&143.7& 14.9\\ 77.7&144.8& 45.0& 67.2&139.3& 16.4& 80.7&133.2& 43.3& 85.1&133.5& 55.6\\ 94.7&143.7& 10.6& 81.2&125.0& 45.9& 81.9&123.2& 45.2& 83.8&123.1& 35.5\\ 84.8&121.4& 43.6& 82.9&119.2& 44.6& 82.1&116.4& 38.8& 84.3&114.8& 34.9\\ 96.7&142.6& 17.0& 92.0&109.0& 50.4& 96.1&146.6& 2.0& 78.5&102.5& 33.8\\ 78.7&103.0& 51.1& 59.5&107.4& 21.8& 56.5&105.5& 46.5& 64.3&132.1& 5.6\\ 152.7&146.7& 19.6&155.8&145.4& 32.3&161.2&138.1& 3.7&161.0&138.1& 2.7\\ 162.1&136.9& 2.5&166.2&132.0& 2.5&168.7&133.4& 2.4&169.3&133.7& 7.2\\ 57.9&140.7& 7.0& 57.5&142.3& 11.8& 57.3&141.7& 8.5& 56.0&137.7& 9.5\\ 53.4&139.3& 7.0& 53.1&136.0& 10.5& 54.0&137.7& 6.6& 54.5&136.7& 6.6\\ 53.3&137.8& 8.8& 52.1&139.3& 11.6& 48.0&114.4& 48.2& 44.2&129.6& 36.2\\ 39.4&136.8& 44.9& 42.7&124.0& 43.0& 38.1&134.4& 37.5& 37.1&131.9& 31.5\\ 37.6&125.4& 39.9& 31.2&127.9& 35.5& 40.1&112.2& 51.7& 29.3&118.6& 36.5\\ 23.8&114.5& 40.2&141.0&127.8& 7.8&140.1&127.3& 17.0&140.9&121.4& 36.4\\ 135.0&132.3& 19.6&139.3&122.9& 15.0&142.0&117.2& 28.8&140.4&117.2& 20.1\\ \hline \end{tabular} \end{center} \clearpage \scriptsize \begin{center} {\normalsize Table~\thetable (continued).} \par\vspace{\baselineskip}\par \begin{tabular}{rrrrrrrrrrrr} \hline \(x\)&\(y\)& dbh &\(x\)&\(y\)& dbh &\(x\)&\(y\)& dbh &\(x\)&\(y\)& dbh \\ \hline 138.5&121.5& 39.3& 28.7&158.8& 37.9& 33.7&162.3& 40.6& 23.1&160.8& 33.0\\ 11.3&158.9& 35.7& 18.2&168.2& 20.6& 21.5&172.3& 22.0& 15.9&168.3& 16.3\\ 15.4&172.8& 5.6& 14.0&174.2& 7.4& 6.8&179.6& 42.3& 6.0&184.1& 43.8\\ 1.6&194.9& 53.0& 43.6&197.3& 48.1& 39.4&195.5& 41.9& 37.1&196.1& 48.0\\ 23.7&193.9& 75.9& 21.5&187.9& 40.4& 27.7&188.7& 40.9& 32.3&178.9& 39.4\\ 32.6&168.6& 40.9& 37.7&176.9& 17.6&107.5&138.5& 17.8&107.9&139.5& 3.7\\ 116.5&122.6& 19.0&114.5&127.7& 11.2&115.3&127.4& 27.6&115.3&128.1& 14.5\\ 119.0&127.4& 34.4&119.4&127.7& 20.0& 94.7&179.8& 2.9& 89.3&185.0& 7.3\\ 90.8&174.0& 52.7& 95.3&158.4& 8.7& 90.9&162.1& 3.6& 90.2&162.1& 4.6\\ 90.2&161.7& 11.4& 90.6&160.8& 11.0& 93.0&158.0& 18.7& 78.4&172.4& 5.6\\ 76.2&171.4& 2.1& 75.8&171.0& 3.3& 75.7&169.7& 11.5& 82.7&163.5& 2.6\\ 76.7&166.3& 4.4& 74.7&167.1& 18.3&119.4&170.8& 7.5& 74.2&164.3& 17.2\\ 73.9&162.7& 4.6& 81.7&156.7& 32.0& 79.5&156.3& 56.7& 56.8&116.0& 46.0\\ 62.2&137.7& 7.8& 58.2&125.1& 54.9& 54.1&115.5& 45.5& 59.5&138.1& 9.2\\ 58.6&140.3& 13.2& 58.8&141.5& 15.3& 57.9&137.3& 8.5&153.5&159.9& 2.2\\ 155.9&183.7& 58.8&160.4&176.6& 47.5&171.3&185.1& 52.2&182.8&187.4& 56.3\\ 182.5&196.0& 39.8&176.3&197.7& 38.1&161.9&199.4& 38.9&199.5&179.4& 9.7\\ 197.6&176.9& 7.4&196.3&192.4& 22.1&195.7&180.5& 16.9&196.2&177.1& 5.9\\ 196.3&176.0& 10.5&193.7&185.8& 9.5&191.7&189.2& 45.9&194.5&173.8& 11.4\\ 192.7&177.3& 7.8&188.9&182.1& 14.4&190.1&174.4& 8.3&186.9&179.4& 30.6\\ 26.9&111.3& 44.4& 17.9&111.0& 38.7& 34.4&104.2& 41.5& 31.9&103.2& 34.5\\ 20.6&101.5& 31.8& 14.1&103.1& 39.7& 2.9&122.8& 23.3& 6.4&125.9& 37.7\\ 2.2&142.2& 43.0& 11.7&116.2& 39.2& 14.2&116.5& 40.4& 15.6&118.1& 36.7\\ 13.6&127.4& 48.4& 11.1&134.8& 27.9& 7.2&141.7& 46.4& 12.2&140.1& 38.5\\ 23.0&132.7& 39.4& 30.2&133.9& 50.0& 27.7&136.5& 51.6& 3.4&148.8& 38.7\\ 15.4&145.6& 39.6& 16.7&146.4& 29.1& 24.3&145.7& 44.0& 0.4&175.2& 50.9\\ 0.0&177.5& 50.8& 7.9&151.0& 43.0& 33.2&151.2& 44.5& 36.6&150.6& 29.8\\ 42.2&153.7& 44.3& 24.5&153.4& 51.2& 40.4&179.3& 37.7& 41.0&176.6& 36.8\\ 43.9&182.2& 33.6& 44.7&184.6& 47.9& 45.6&175.2& 32.0& 47.5&175.9& 40.3\\ 51.2&177.9& 42.5& 55.0&159.3& 59.7& 58.0&180.3& 44.2& 54.6&188.7& 30.9\\ 58.9&180.0& 39.5& 63.9&178.6& 48.7& 64.3&178.9& 32.8& 65.6&179.3& 47.2\\ 61.0&184.9& 42.1& 63.1&183.3& 43.8& 86.1&186.9& 30.5& 65.8&194.9& 28.3\\ 90.0&195.1& 10.4& 94.3&196.1& 15.0& 91.9&197.1& 7.4& 86.5&197.4& 15.3\\ 87.5&199.3& 17.5& 93.9&199.2& 5.0& 92.4&199.3& 12.2& 81.8&198.9& 9.0\\ 99.0&158.1& 2.4& 94.1&187.2& 13.7& 95.4&182.9& 13.1& 97.1&168.4& 12.8\\ 79.2&155.6& 27.0& 61.6&158.2& 2.6& 70.3&153.1& 4.9& 79.8&151.8& 35.0\\ 110.1&150.4& 23.7&116.1&156.8& 42.9&114.0&165.1& 14.2&103.2&154.4& 3.3\\ 112.3&167.0& 28.4&110.4&167.3& 10.0&110.6&166.4& 6.4&107.0&165.0& 22.0\\ 105.6&160.6& 4.3&104.0&162.4& 10.0&104.0&166.1& 9.2&103.7&167.2& 3.7\\ 108.6&182.1& 66.7&105.7&182.6& 68.0&102.8&169.7& 23.1&101.5&171.8& 5.7\\ 100.4&170.5& 11.7&144.1&199.0& 40.4&138.3&197.9& 43.3&142.7&197.2& 60.2\\ 118.8&188.0& 55.5&142.3&173.3& 54.1&143.8&156.0& 22.3&145.3&155.6& 21.4\\ 151.2&192.2& 55.7&153.7&176.5& 51.4&186.9&174.7& 23.9&181.2&176.9& 5.2\\ 181.1&176.1& 7.6&177.2&174.5& 27.8&182.8&162.9& 49.6&180.0&160.2& 51.0\\ 189.1&156.3& 50.7&196.9&151.4& 43.4&171.4&161.6& 55.6&169.1&160.0& 4.3\\ 162.5&157.3& 2.5&156.7&155.3& 23.5&154.1&150.8& 8.0& 87.7&200.0& 11.7\\ \hline \end{tabular} \end{center} \normalsize \clearpage \begin{table} \caption{ Coefficients for transforming \(\protect\sqrt{b_1}\) to a standard normal using a Johnson \(S_U\) approximation.} \centerline{Reproduced from Table~4 of D'Agostino and Pearson~\protect\cite{dagostino73}.} \label{tbl:johnson} \scriptsize \begin{center} \begin{tabular}{rllrllrll}\hline \multicolumn{1}{c}{\(n\)} & \multicolumn{1}{c}{\(\delta\)} & \multicolumn{1}{c}{\(1/\lambda\)} & \multicolumn{1}{c}{\(n\)} & \multicolumn{1}{c}{\(\delta\)} & \multicolumn{1}{c}{\(1/\lambda\)} & \multicolumn{1}{c}{\(n\)} & \multicolumn{1}{c}{\(\delta\)} & \multicolumn{1}{c}{\(1/\lambda\)} \\ \hline 8 & 5.563 & 0.3030 & 62 & 3.389 & 1.0400 & 260 & 5.757 & 1.1744 \\ 9 & 4.260 & 0.4080 & 64 & 3.420 & 1.0449 & 270 & 5.835 & 1.1761 \\ 10 & 3.734 & 0.4794 & 66 & 3.450 & 1.0495 & 280 & 5.946 & 1.1779 \\ & & & 68 & 3.480 & 1.0540 & 290 & 6.039 & 1.1793 \\ 11 & 3.447 & 0.5339 & 70 & 3.510 & 1.0581 & 300 & 6.130 & 1.1808 \\ 12 & 3.270 & 0.5781 \\ 13 & 3.151 & 0.6153 & 72 & 3.540 & 1.0621 & 310 & 6.220 & 1.1821 \\ 14 & 3.069 & 0.6473 & 74 & 3.569 & 1.0659 & 320 & 6.308 & 1.1834 \\ 15 & 3.010 & 0.6753 & 76 & 3.599 & 1.0695 & 330 & 6.396 & 1.1846 \\ & & & 78 & 3.628 & 1.0730 & 340 & 6.482 & 1.1858 \\ 16 & 2.968 & 0.7001 & 80 & 3.657 & 1.0763 & 350 & 6.567 & 1.1868 \\ 17 & 2.937 & 0.7224 \\ 18 & 2.915 & 0.7426 & 82 & 3.686 & 1.0795 & 360 & 6.651 & 1.1879 \\ 19 & 2.900 & 0.7610 & 84 & 3.715 & 1.0825 & 370 & 6.733 & 1.1888 \\ 20 & 2.890 & 0.7779 & 86 & 3.744 & 1.0854 & 380 & 6.815 & 1.1897 \\ & & & 88 & 3.772 & 1.0882 & 390 & 6.896 & 1.1906 \\ 21 & 2.884 & 0.7934 & 90 & 3.801 & 1.0909 & 400 & 6.976 & 1.1914 \\ 22 & 2.882 & 0.8078 \\ 23 & 2.882 & 0.8211 & 92 & 3.829 & 1.0934 & 410 & 7.056 & 1.1922 \\ 24 & 2.884 & 0.8336 & 94 & 3.857 & 1.0959 & 420 & 7.134 & 1.1929 \\ 25 & 2.889 & 0.8452 & 96 & 3.885 & 1.0983 & 430 & 7.211 & 1.1937 \\ & & & 98 & 3.913 & 1.1006 & 440 & 7.288 & 1.1943 \\ 26 & 2.895 & 0.8561 & 100 & 3.940 & 1.1028 & 450 & 7.363 & 1.1950 \\ 27 & 2.902 & 0.8664 \\ 28 & 2.910 & 0.8760 & 105 & 4.009 & 1.1080 & 460 & 7.438 & 1.1956 \\ 29 & 2.920 & 0.8851 & 110 & 4.076 & 1.1128 & 470 & 7.513 & 1.1962 \\ 30 & 2.930 & 0.8938 & 115 & 4.142 & 1.1172 & 480 & 7.586 & 1.1968 \\ & & & 120 & 4.207 & 1.1212 & 490 & 7.659 & 1.1974 \\ 31 & 2.941 & 0.9020 & 125 & 4.272 & 1.1250 & 500 & 7.731 & 1.1959 \\ 32 & 2.952 & 0.9097 \\ 33 & 2.964 & 0.9171 & 130 & 4.336 & 1.1285 & 520 & 7.873 & 1.1989 \\ 34 & 2.977 & 0.9241 & 135 & 4.398 & 1.1318 & 540 & 8.013 & 1.1998 \\ 35 & 2.990 & 0.9308 & 140 & 4.460 & 1.1348 & 560 & 8.151 & 1.2007 \\ & & & 145 & 4.521 & 1.1377 & 580 & 8.286 & 1.2015 \\ 36 & 3.003 & 0.9372 & 150 & 4.582 & 1.1403 & 600 & 8.419 & 1.2023 \\ 37 & 3.016 & 0.9433 \\ 38 & 3.030 & 0.9492 & 155 & 4.641 & 1.1428 & 620 & 8.550 & 1.2030 \\ 39 & 3.044 & 0.9548 & 160 & 4.700 & 1.1452 & 640 & 8.679 & 1.2036 \\ 40 & 3.058 & 0.9601 & 165 & 4.758 & 1.1474 & 660 & 8.806 & 1.2043 \\ & & & 170 & 4.816 & 1.1496 & 680 & 8.931 & 1.2049 \\ 41 & 3.073 & 0.9653 & 175 & 4.873 & 1.1516 & 700 & 9.054 & 1.2054 \\ 42 & 3.087 & 0.9702 \\ 43 & 3.102 & 0.9750 & 180 & 4.929 & 1.1535 & 720 & 9.176 & 1.2060 \\ 44 & 3.117 & 0.9795 & 185 & 4.985 & 1.1553 & 740 & 9.297 & 1.2065 \\ 45 & 3.131 & 0.9840 & 190 & 5.040 & 1.1570 & 760 & 9.415 & 1.2069 \\ & & & 195 & 5.094 & 1.1586 & 780 & 9.533 & 1.2073 \\ 46 & 3.146 & 0.9882 & 200 & 5.148 & 1.1602 & 800 & 9.649 & 1.2078 \\ 47 & 3.161 & 0.9923 \\ 48 & 3.176 & 0.9963 & 205 & 5.202 & 1.1616 & 820 & 9.763 & 1.2082 \\ 49 & 3.192 & 1.0001 & 210 & 5.255 & 1.1631 & 840 & 9.876 & 1.2086 \\ 50 & 3.207 & 1.0038 & 215 & 5.307 & 1.1644 & 860 & 9.988 & 1.2089 \\ & & & 220 & 5.359 & 1.1657 & 880 & 10.098 & 1.2093 \\ 52 & 3.237 & 1.0108 & 225 & 5.410 & 1.1669 & 900 & 10.208 & 1.2096 \\ 54 & 3.268 & 1.0174 \\ 56 & 3.298 & 1.0235 & 230 & 5.461 & 1.1681 & 920 & 10.316 & 1.2100 \\ 58 & 3.329 & 1.0293 & 235 & 5.511 & 1.1693 & 940 & 10.423 & 1.2103 \\ 60 & 3.359 & 1.0348 & 240 & 5.561 & 1.1704 & 960 & 10.529 & 1.2106 \\ & & & 245 & 5.611 & 1.1714 & 980 & 10.634 & 1.2109 \\ & & & 250 & 5.660 & 1.1724 & 1000 & 10.738 & 1.2111 \\ \hline \end{tabular} \end{center} \normalsize \end{table} \clearpage \begin{table} \caption{Coefficients \(\{a_{n-i+1}\}\) for the Shapiro-Wilk \(W\) Test for Normality.} \centerline{Reproduced from Table~5 of Shapiro and Wilk~\cite{shapiro65}.} \label{tbl:shapiro-wilk-a} \tiny \begin{center} \begin{tabular}{rcccccccccc}\hline \multicolumn{1}{c}{\(i\)} & \multicolumn{10}{c}{\(n\)} \\ \hline & \multicolumn{1}{c}{2} & \multicolumn{1}{c}{3} & \multicolumn{1}{c}{4} & \multicolumn{1}{c}{5} & \multicolumn{1}{c}{6} & \multicolumn{1}{c}{7} & \multicolumn{1}{c}{8} & \multicolumn{1}{c}{9} & \multicolumn{1}{c}{10} \\ \cline{2-10} 1&0.7071&0.7071&0.6872&0.6646&0.6431&0.6233&0.6052&0.5888&0.5739\\ 2& --&0.0000&0.1677&0.2413&0.2806&0.3031&0.3164&0.3244&0.3291\\ 3& --& --& -- &0.0000&0.0875&0.1401&0.1743&0.1976&0.2141\\ 4& --& --& -- & -- & -- &0.0000&0.0561&0.0947&0.1224\\ 5& --& --& -- & -- & -- & -- & -- &0.0000&0.0399\\ \\ & \multicolumn{1}{c}{11} & \multicolumn{1}{c}{12} & \multicolumn{1}{c}{13} & \multicolumn{1}{c}{14} & \multicolumn{1}{c}{15} & \multicolumn{1}{c}{16} & \multicolumn{1}{c}{17} & \multicolumn{1}{c}{18} & \multicolumn{1}{c}{19} & \multicolumn{1}{c}{20} \\ \cline{2-11} 1&0.5601&0.5475&0.5359&0.5251&0.5150&0.5056&0.4968&0.4886&0.4808&0.4734\\ 2&0.3315&0.3325&0.3325&0.3318&0.3306&0.3290&0.3273&0.3253&0.3232&0.3211\\ 3&0.2260&0.2347&0.2412&0.2460&0.2495&0.2521&0.2540&0.2553&0.2561&0.2565\\ 4&0.1429&0.1586&0.1707&0.1802&0.1878&0.1939&0.1988&0.2027&0.2059&0.2085\\ 5&0.0695&0.0922&0.1099&0.1240&0.1353&0.1447&0.1524&0.1587&0.1641&0.1686\\ 6&0.0000&0.0303&0.0539&0.0727&0.0880&0.1005&0.1109&0.1197&0.1271&0.1334\\ 7& -- & -- &0.0000&0.0240&0.0433&0.0593&0.0725&0.0837&0.0932&0.1013\\ 8& -- & -- & -- & -- &0.0000&0.0196&0.0359&0.0496&0.0612&0.0711\\ 9& -- & -- & -- & -- & -- & -- &0.0000&0.0163&0.0303&0.0422\\ 10& -- & -- & -- & -- & -- & -- & -- & -- &0.0000&0.0140\\ \\ & \multicolumn{1}{c}{21} & \multicolumn{1}{c}{22} & \multicolumn{1}{c}{23} & \multicolumn{1}{c}{24} & \multicolumn{1}{c}{25} & \multicolumn{1}{c}{26} & \multicolumn{1}{c}{27} & \multicolumn{1}{c}{28} & \multicolumn{1}{c}{29} & \multicolumn{1}{c}{30} \\ \cline{2-11} 1&0.4643&0.4590&0.4542&0.4493&0.4450&0.4407&0.4366&0.4328&0.4291&0.4254\\ 2&0.3185&0.3156&0.3126&0.3098&0.3069&0.3043&0.3018&0.2992&0.2968&0.2944\\ 3&0.2578&0.2571&0.2563&0.2554&0.2543&0.2533&0.2522&0.2510&0.2499&0.2487\\ 4&0.2119&0.2131&0.2139&0.2145&0.2148&0.2151&0.2152&0.2151&0.2150&0.2148\\ 5&0.1736&0.1764&0.1787&0.1807&0.1822&0.1836&0.1848&0.1857&0.1864&0.1870\\ 6&0.1399&0.1443&0.1480&0.1512&0.1539&0.1563&0.1584&0.1601&0.1616&0.1630\\ 7&0.1092&0.1150&0.1201&0.1245&0.1283&0.1316&0.1346&0.1372&0.1395&0.1415\\ 8&0.0804&0.0878&0.0941&0.0997&0.1046&0.1089&0.1128&0.1162&0.1192&0.1219\\ 9&0.0530&0.0618&0.0696&0.0764&0.0823&0.0876&0.0923&0.0965&0.1002&0.1036\\ 10&0.0263&0.0368&0.0459&0.0539&0.0610&0.0672&0.0728&0.0778&0.0822&0.0862\\ 11&0.0000&0.0122&0.0228&0.0321&0.0403&0.0476&0.0540&0.0598&0.0650&0.0697\\ 12& -- & -- &0.0000&0.0107&0.0200&0.0284&0.0358&0.0424&0.0483&0.0537\\ 13& -- & -- & -- & -- &0.0000&0.0094&0.0178&0.0253&0.0320&0.0381\\ 14& -- & -- & -- & -- & -- & -- &0.0000&0.0084&0.0159&0.0227\\ 15& -- & -- & -- & -- & -- & -- & -- & -- &0.0000&0.0076\\ \\ & \multicolumn{1}{c}{31} & \multicolumn{1}{c}{32} & \multicolumn{1}{c}{33} & \multicolumn{1}{c}{34} & \multicolumn{1}{c}{35} & \multicolumn{1}{c}{36} & \multicolumn{1}{c}{37} & \multicolumn{1}{c}{38} & \multicolumn{1}{c}{39} & \multicolumn{1}{c}{40} \\ \cline{2-11} 1&0.4220&0.4188&0.4156&0.4127&0.4096&0.4068&0.4040&0.4015&0.3989&0.3964\\ 2&0.2921&0.2898&0.2876&0.2854&0.2834&0.2813&0.2794&0.2774&0.2755&0.2737\\ 3&0.2475&0.2463&0.2451&0.2439&0.2427&0.2415&0.2403&0.2391&0.2380&0.2368\\ 4&0.2145&0.2141&0.2137&0.2132&0.2127&0.2121&0.2116&0.2110&0.2104&0.2098\\ 5&0.1874&0.1878&0.1880&0.1882&0.1883&0.1883&0.1883&0.1881&0.1880&0.1878\\ 6&0.1641&0.1651&0.1660&0.1667&0.1673&0.1678&0.1683&0.1686&0.1689&0.1691\\ 7&0.1433&0.1449&0.1463&0.1475&0.1487&0.1496&0.1505&0.1513&0.1520&0.1526\\ 8&0.1243&0.1265&0.1284&0.1301&0.1317&0.1331&0.1344&0.1356&0.1366&0.1376\\ 9&0.1066&0.1093&0.1118&0.1140&0.1160&0.1179&0.1196&0.1211&0.1225&0.1237\\ 10&0.0899&0.0931&0.0961&0.0988&0.1013&0.1036&0.1056&0.1075&0.1092&0.1108\\ 11&0.0739&0.0777&0.0812&0.0844&0.0873&0.0900&0.0924&0.0947&0.0967&0.0986\\ 12&0.0585&0.0629&0.0669&0.0706&0.0739&0.0770&0.0798&0.0824&0.0848&0.0870\\ 13&0.0435&0.0485&0.0530&0.0572&0.0610&0.0645&0.0677&0.0706&0.0733&0.0759\\ 14&0.0289&0.0344&0.0395&0.0441&0.0484&0.0523&0.0559&0.0592&0.0622&0.0651\\ 15&0.0144&0.0206&0.0262&0.0314&0.0361&0.0404&0.0444&0.0481&0.0515&0.0546\\ 16&0.0000&0.0068&0.0131&0.0187&0.0239&0.0287&0.0331&0.0372&0.0409&0.0444\\ 17& -- & -- &0.0000&0.0062&0.0119&0.0172&0.0220&0.0264&0.0305&0.0343\\ 18& -- & -- & -- & -- &0.0000&0.0057&0.0110&0.0158&0.0203&0.0244\\ 19& -- & -- & -- & -- & -- & -- &0.0000&0.0053&0.0101&0.0146\\ 20& -- & -- & -- & -- & -- & -- & -- & -- &0.0000&0.0049\\ \\ & \multicolumn{1}{c}{41} & \multicolumn{1}{c}{42} & \multicolumn{1}{c}{43} & \multicolumn{1}{c}{44} & \multicolumn{1}{c}{45} & \multicolumn{1}{c}{46} & \multicolumn{1}{c}{47} & \multicolumn{1}{c}{48} & \multicolumn{1}{c}{49} & \multicolumn{1}{c}{50} \\ \cline{2-11} 1&0.3940&0.3917&0.3894&0.3872&0.3850&0.3830&0.3808&0.3789&0.3770&0.3964\\ 2&0.2719&0.2701&0.2684&0.2667&0.2651&0.2635&0.2620&0.2604&0.2589&0.2737\\ 3&0.2357&0.2345&0.2334&0.2323&0.2313&0.2302&0.2291&0.2281&0.2271&0.2368\\ 4&0.2091&0.2085&0.2078&0.2072&0.2065&0.2058&0.2052&0.2045&0.2038&0.2098\\ 5&0.1876&0.1874&0.1871&0.1868&0.1865&0.1862&0.1859&0.1855&0.1851&0.1878\\ 6&0.1693&0.1694&0.1695&0.1695&0.1695&0.1695&0.1695&0.1693&0.1692&0.1691\\ 7&0.1531&0.1535&0.1539&0.1542&0.1545&0.1548&0.1550&0.1551&0.1553&0.1554\\%1526\\ 8&0.1384&0.1392&0.1398&0.1405&0.1410&0.1415&0.1420&0.1423&0.1427&0.1430\\%1376\\ 9&0.1249&0.1259&0.1269&0.1278&0.1286&0.1293&0.1300&0.1306&0.1312&0.1317\\%1237\\ 10&0.1123&0.1136&0.1149&0.1160&0.1170&0.1180&0.1189&0.1197&0.1205&0.1212\\%1108\\ 11&0.1004&0.1020&0.1035&0.1049&0.1062&0.1073&0.1085&0.1095&0.1105&0.1113\\ 12&0.0891&0.0909&0.0927&0.0943&0.0959&0.0972&0.0986&0.0998&0.1010&0.1020\\ 13&0.0782&0.0804&0.0824&0.0842&0.0860&0.0876&0.0892&0.0906&0.0919&0.0932\\ 14&0.0677&0.0701&0.0724&0.0745&0.0765&0.0783&0.0801&0.0817&0.0832&0.0846\\ 15&0.0575&0.0602&0.0628&0.0651&0.0673&0.0694&0.0713&0.0731&0.0748&0.0764\\ 16&0.0476&0.0506&0.0534&0.0560&0.0584&0.0607&0.0628&0.0648&0.0667&0.0685\\ 17&0.0379&0.0411&0.0442&0.0471&0.0497&0.0522&0.0546&0.0568&0.0588&0.0608\\ 18&0.0283&0.0318&0.0352&0.0383&0.0412&0.0439&0.0465&0.0489&0.0511&0.0532\\ 19&0.0188&0.0227&0.0263&0.0296&0.0328&0.0357&0.0385&0.0411&0.0436&0.0459\\ 20&0.0094&0.0136&0.0175&0.0211&0.0245&0.0277&0.0307&0.0335&0.0361&0.0386\\ 21& -- &0.0045&0.0087&0.0126&0.0163&0.0197&0.0229&0.0259&0.0288&0.0314\\ 22& -- & -- &0.0000&0.0042&0.0081&0.0118&0.0153&0.0185&0.0215&0.0244\\ 23& -- & -- & -- & -- &0.0000&0.0039&0.0076&0.0111&0.0143&0.0174\\ 24& -- & -- & -- & -- & -- & -- &0.0000&0.0037&0.0071&0.0104\\ 25& -- & -- & -- & -- & -- & -- & -- & -- &0.0000&0.0035\\ \hline \end{tabular} \end{center} \normalsize \end{table} \clearpage \begin{table} \caption{Critical Values of the Shapiro-Wilk \(W\) for Testing Normality.} \centerline{Reproduced from Table~6 of Shapiro and Wilk~\cite{shapiro65}.} \label{tbl:w-test} \begin{center} \begin{tabular}{rlllll}\hline \(n\) & \multicolumn{5}{c}{\(\alpha\)} \\ \cline{2-6} & 0.01 & 0.02 & 0.05 & 0.10 & 0.50 \\ \hline 3 & 0.753 & 0.756 & 0.767 & 0.789 & 0.959 \\ \hline \end{tabular} \end{center} \normalsize \end{table} \clearpage \begin{table} \caption{Critcal Values of the Shapiro-Wilk \(W\) for Testing Exponentiality.} \centerline{Reproduced from Table~1 of Shapiro and Wilk~\cite{shapiro72}.} \label{tbl:w-test-e} \scriptsize \begin{center} \begin{tabular}{r% @{\extracolsep{3pt}}l% @{\extracolsep{2pt}}l% @{\extracolsep{2pt}}l% @{\extracolsep{2pt}}l% @{\extracolsep{2pt}}l% @{\extracolsep{2pt}}l% @{\extracolsep{2pt}}l% @{\extracolsep{2pt}}l% @{\extracolsep{2pt}}l% @{\extracolsep{2pt}}l% @{\extracolsep{2pt}}l% }\hline \(n\) & \multicolumn{11}{c}{\(\alpha\)} \\ \cline{2-12} &\multicolumn{1}{c}{0.005} &\multicolumn{1}{c}{0.01} &\multicolumn{1}{c}{0.025} &\multicolumn{1}{c}{0.05 } &\multicolumn{1}{c}{0.10 } &\multicolumn{1}{c}{0.50 } &\multicolumn{1}{c}{0.90 } &\multicolumn{1}{c}{0.95 } &\multicolumn{1}{c}{0.975} &\multicolumn{1}{c}{0.99 } &\multicolumn{1}{c}{0.995}\\ \hline 3&.2519&.2538&.2596&.2697&.2915&.5714&.9709&.9926&.9981&.9997&.99993\\ 4&.1241&.1302&.1434&.1604&.1891&.3768&.7514&.8581&.9236&.9680&.9837\\ \hline \end{tabular} \end{center} \normalsize \end{table} \clearpage \begin{table} \caption{Coefficients \(\{b_{n-i+1}\}\) for the Shapiro-Francia \(W'\) Test for Normality.} \centerline{Reproduced from Table~1 of Shapiro and Wilk~\cite{shapiro72b}.} \label{tbl:shapiro-francia-b} %\begin{center} %\begin{tabular} %\hline %\end{tabular} %\end{center} \normalsize \end{table} \clearpage \begin{table} \caption{Percentage Points for \(W'\) Test Statistic} \centerline{Reproduced from Table~1 of Shapirio and Francia~\cite{shapiro72b}.} \label{tbl:w-prime-test} \scriptsize \begin{center} \begin{tabular}{l@{\extracolsep{1pt}}r% @{\extracolsep{1pt}}r% @{\extracolsep{1pt}}r% @{\extracolsep{1pt}}rrrrrrrr}\hline \(n\) & \multicolumn{11}{c}{\(P\)} \\ \cline{2-12} & \multicolumn{1}{l}{0.01} & \multicolumn{1}{l}{0.05} & \multicolumn{1}{l}{0.10} & \multicolumn{1}{l}{0.15} & \multicolumn{1}{l}{0.20} & \multicolumn{1}{l}{0.50} & \multicolumn{1}{l}{0.80} & \multicolumn{1}{l}{0.85} & \multicolumn{1}{l}{0.90} & \multicolumn{1}{l}{0.95} & \multicolumn{1}{l}{0.99}\\ \hline 35&0.919&0.943&0.952&0.956&0.964&0.976&0.982&0.985&0.987&0.989&0.992\\ 50& .935& .953& .963& .968& .971& .981& .987& .988& .990& .991& .994\\ \\ 51&0.935&0.954&0.964&0.968&0.971&0.981&0.988&0.989&0.990&0.992&0.994\\ 53& .938& .957& .964& .969& .972& .982& .988& .989& .990& .992& .994\\ 55& .940& .958& .965& .971& .973& .983& .988& .990& .991& .992& .994\\ 57& .944& .961& .966& .971& .974& .983& .989& .990& .991& .992& .994\\ 59& .945& .962& .967& .972& .975& .983& .989& .990& .991& .992& .994\\ \\ 61&0.947&0.963&0.968&0.973&0.975&0.984&0.990&0.990&0.991&0.992&0.994\\ 63& .947& .964& .970& .973& .976& .984& .990& .991& .992& .993& .994\\ 65& .948& .965& .971& .974& .976& .985& .990& .991& .992& .993& .995\\ 67& .950& .966& .971& .974& .977& .985& .990& .991& .992& .993& .995\\ 69& .951& .966& .972& .976& .978& .986& .990& .991& .992& .993& .995\\ \\ 71&0.953&0.967&0.972&0.976&0.978&0.986&0.990&0.991&0.992&0.994&0.995\\ 73& .956& .968& .973& .976& .979& .986& .991& .992& .993& .994& .995\\ 75& .956& .969& .973& .976& .979& .986& .991& .992& .993& .994& .995\\ 77& .957& .969& .974& .977& .980& .987& .991& .992& .993& .994& .996\\ 79& .957& .970& .975& .978& .980& .987& .991& .992& .993& .994& .996\\ \\ 81&0.958&0.970&0.975&0.979&0.981&0.987&0.992&0.992&0.993&0.994&0.996\\ 83& .960& .971& .976& .979& .981& .988& .992& .992& .993& .994& .996\\ 85& .961& .972& .977& .980& .981& .988& .992& .992& .993& .994& .996\\ 87& .961& .972& .977& .980& .982& .988& .992& .993& .994& .994& .996\\ 89& .961& .972& .977& .981& .982& .988& .992& .993& .994& .995& .996\\ \\ 91&0.962&0.973&0.978&0.981&0.983&0.989&0.992&0.993&0.994&0.995&0.996\\ 93& .963& .973& .979& .981& .983& .989& .992& .993& .994& .995& .996\\ 95& .965& .974& .979& .981& .983& .989& .993& .993& .994& .995& .996\\ 97& .965& .975& .979& .982& .984& .989& .993& .993& .994& .995& .996\\ 99& .967& .976& .980& .982& .984& .989& .993& .994& .994& .995& .996\\ \hline \end{tabular} \end{center} \normalsize \end{table} \clearpage \end{document}