index.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541
  1. /****************************************************************************
  2. * MODULE: R-Tree library
  3. *
  4. * AUTHOR(S): Antonin Guttman - original code
  5. * Daniel Green (green@superliminal.com) - major clean-up
  6. * and implementation of bounding spheres
  7. * Markus Metz - R*-tree
  8. *
  9. * PURPOSE: Multidimensional index
  10. *
  11. * COPYRIGHT: (C) 2009 by the GRASS Development Team
  12. *
  13. * This program is free software under the GNU General Public
  14. * License (>=v2). Read the file COPYING that comes with GRASS
  15. * for details.
  16. *****************************************************************************/
  17. #include <stdlib.h>
  18. #include <assert.h>
  19. #include "index.h"
  20. #include "card.h"
  21. /* stack used for non-recursive insertion/deletion */
  22. struct stack
  23. {
  24. struct Node *sn; /* stack node */
  25. int branch_id; /* branch no to follow down */
  26. };
  27. /*
  28. * Make a new index, empty.
  29. * ndims number of dimensions
  30. * returns pointer to RTree structure
  31. */
  32. struct RTree *RTreeNewIndex(int ndims)
  33. {
  34. struct RTree *new_rtree;
  35. struct Node *n;
  36. new_rtree = (struct RTree *)malloc(sizeof(struct RTree));
  37. new_rtree->ndims = ndims;
  38. new_rtree->nsides = 2 * ndims;
  39. new_rtree->nodesize = sizeof(struct Node);
  40. new_rtree->branchsize = sizeof(struct Branch);
  41. new_rtree->rectsize = sizeof(struct Rect);
  42. /* nodecard and leafcard can be adjusted, must NOT be larger than MAXCARD */
  43. new_rtree->nodecard = MAXCARD;
  44. new_rtree->leafcard = MAXCARD;
  45. /* NOTE: min fill can be changed if needed. */
  46. new_rtree->min_node_fill = (new_rtree->nodecard - 1) / 2;
  47. new_rtree->min_leaf_fill = (new_rtree->leafcard - 1) / 2;
  48. n = RTreeNewNode(new_rtree, 0);
  49. new_rtree->n_levels = n->level = 0; /* leaf */
  50. new_rtree->root = n;
  51. new_rtree->n_nodes = 1;
  52. new_rtree->n_leafs = 0;
  53. return new_rtree;
  54. }
  55. void RTreeFreeIndex(struct RTree *t)
  56. {
  57. assert(t);
  58. if (t->root)
  59. RTreeDestroyNode(t->root, t->nodecard);
  60. free(t);
  61. }
  62. /*
  63. * Search in an index tree for all data retangles that
  64. * overlap the argument rectangle.
  65. * Return the number of qualifying data rects.
  66. */
  67. int RTreeSearch(struct RTree *t, struct Rect *r, SearchHitCallback shcb,
  68. void *cbarg)
  69. {
  70. struct Node *n;
  71. int hitCount = 0, found;
  72. int i;
  73. struct stack s[MAXLEVEL];
  74. int top = 0;
  75. assert(r);
  76. assert(t);
  77. /* stack size of t->n_levels + 1 is enough because of depth first search */
  78. /* only one node per level on stack at any given time */
  79. /* add root node position to stack */
  80. s[top].sn = t->root;
  81. s[top].branch_id = i = 0;
  82. n = s[top].sn;
  83. while (top >= 0) {
  84. n = s[top].sn;
  85. if (s[top].sn->level > 0) { /* this is an internal node in the tree */
  86. found = 1;
  87. for (i = s[top].branch_id; i < t->nodecard; i++) {
  88. if (s[top].sn->branch[i].child.ptr &&
  89. RTreeOverlap(r, &(s[top].sn->branch[i].rect), t)) {
  90. s[top++].branch_id = i + 1;
  91. /* add next node to stack */
  92. s[top].sn = n->branch[i].child.ptr;
  93. s[top].branch_id = 0;
  94. found = 0;
  95. break;
  96. }
  97. }
  98. if (found) {
  99. /* nothing else found, go back up */
  100. s[top].branch_id = t->nodecard;
  101. top--;
  102. }
  103. }
  104. else { /* this is a leaf node */
  105. for (i = 0; i < t->leafcard; i++) {
  106. if (s[top].sn->branch[i].child.id &&
  107. RTreeOverlap(r, &(s[top].sn->branch[i].rect), t)) {
  108. hitCount++;
  109. if (shcb) { /* call the user-provided callback */
  110. if (!shcb(s[top].sn->branch[i].child.id, cbarg)) {
  111. /* callback wants to terminate search early */
  112. return hitCount;
  113. }
  114. }
  115. }
  116. }
  117. top--;
  118. }
  119. }
  120. return hitCount;
  121. }
  122. /*
  123. * Free ListBranch
  124. */
  125. static void RTreeFreeListBranch(struct ListBranch *p)
  126. {
  127. free(p);
  128. }
  129. /*
  130. * Inserts a new data rectangle into the index structure.
  131. * Non-recursively descends tree.
  132. * Returns 0 if node was not split and nothing was removed.
  133. * Returns 1 if root node was split. Old node updated to become one of two.
  134. * Returns 2 if branches need to be reinserted.
  135. * The level argument specifies the number of steps up from the leaf
  136. * level to insert; e.g. a data rectangle goes in at level = 0.
  137. */
  138. static int RTreeInsertRect2(struct Rect *r, union Child child, int level,
  139. struct Node **newnode, struct RTree *t,
  140. struct ListBranch **ee, int *overflow)
  141. {
  142. int i;
  143. struct Branch b;
  144. struct Node *n, *n2;
  145. struct Rect *cover;
  146. struct stack s[MAXLEVEL];
  147. int top = 0, down = 0;
  148. int result;
  149. assert(r && newnode && t);
  150. /* add root node to stack */
  151. s[top].sn = t->root;
  152. /* go down to level of insertion */
  153. while (s[top].sn->level > level) {
  154. n = s[top].sn;
  155. i = RTreePickBranch(r, n, t);
  156. s[top++].branch_id = i;
  157. /* add next node to stack */
  158. s[top].sn = n->branch[i].child.ptr;
  159. }
  160. /* Have reached level for insertion. Remove p rectangles or split */
  161. if (s[top].sn->level == level) {
  162. b.rect = *r;
  163. /* child field of leaves contains tid of data record */
  164. b.child = child;
  165. /* add branch, may split node or remove branches */
  166. cover = &(s[top - 1].sn->branch[s[top - 1].branch_id].rect);
  167. result = RTreeAddBranch(&b, s[top].sn, &n2, ee, cover, overflow, t);
  168. /* update node count */
  169. if (result == 1) {
  170. t->n_nodes++;
  171. }
  172. }
  173. else {
  174. /* Not supposed to happen */
  175. assert(FALSE);
  176. return 0;
  177. }
  178. /* go back up */
  179. while (top) {
  180. down = top--;
  181. i = s[top].branch_id;
  182. if (result == 0) { /* branch was added */
  183. s[top].sn->branch[i].rect =
  184. RTreeCombineRect(r, &(s[top].sn->branch[i].rect), t);
  185. }
  186. else if (result == 2) { /* branches were removed */
  187. /* get node cover of previous node */
  188. s[top].sn->branch[i].rect = RTreeNodeCover(s[down].sn, t);
  189. }
  190. else if (result == 1) { /* node was split */
  191. /* get node cover of previous node */
  192. s[top].sn->branch[i].rect = RTreeNodeCover(s[down].sn, t);
  193. /* add new branch for new node previously added by RTreeAddBranch() */
  194. b.child.ptr = n2;
  195. b.rect = RTreeNodeCover(b.child.ptr, t);
  196. /* add branch, may split node or remove branches */
  197. cover = &(s[top - 1].sn->branch[s[top - 1].branch_id].rect);
  198. result =
  199. RTreeAddBranch(&b, s[top].sn, &n2, ee, cover, overflow, t);
  200. /* update node count */
  201. if (result == 1) {
  202. t->n_nodes++;
  203. }
  204. }
  205. }
  206. *newnode = n2;
  207. return result;
  208. }
  209. /*
  210. * Insert a data rectangle into an index structure.
  211. * RTreeInsertRect1 provides for splitting the root;
  212. * returns 1 if root was split, 0 if it was not.
  213. * The level argument specifies the number of steps up from the leaf
  214. * level to insert; e.g. a data rectangle goes in at level = 0.
  215. * RTreeInsertRect2 does the actual insertion.
  216. */
  217. static int RTreeInsertRect1(struct Rect *r, union Child child, int level,
  218. struct RTree *t)
  219. {
  220. struct Node *newnode;
  221. struct Node *newroot;
  222. struct Branch b;
  223. struct ListBranch *reInsertList = NULL;
  224. struct ListBranch *e;
  225. int result;
  226. int i, overflow[MAXLEVEL];
  227. /* R*-tree forced reinsertion: for each level only once */
  228. for (i = 0; i < MAXLEVEL; i++)
  229. overflow[i] = 1;
  230. result =
  231. RTreeInsertRect2(r, child, level, &newnode, t, &reInsertList,
  232. overflow);
  233. if (result == 1) { /* root split */
  234. /* grow a new root, & tree taller */
  235. t->n_levels++;
  236. newroot = RTreeNewNode(t, t->n_levels);
  237. newroot->level = t->n_levels;
  238. /* branch for old root */
  239. b.rect = RTreeNodeCover(t->root, t);
  240. b.child.ptr = t->root;
  241. RTreeAddBranch(&b, newroot, NULL, NULL, NULL, NULL, t);
  242. /* branch for new node created by RTreeInsertRect2() */
  243. b.rect = RTreeNodeCover(newnode, t);
  244. b.child.ptr = newnode;
  245. RTreeAddBranch(&b, newroot, NULL, NULL, NULL, NULL, t);
  246. /* set new root node */
  247. t->root = newroot;
  248. t->n_nodes++;
  249. }
  250. else if (result == 2) { /* branches were removed */
  251. while (reInsertList) {
  252. /* get next branch in list */
  253. b = reInsertList->b;
  254. level = reInsertList->level;
  255. e = reInsertList;
  256. reInsertList = reInsertList->next;
  257. RTreeFreeListBranch(e);
  258. /* reinsert branches */
  259. result =
  260. RTreeInsertRect2(&(b.rect), b.child, level, &newnode, t,
  261. &reInsertList, overflow);
  262. if (result == 1) { /* root split */
  263. /* grow a new root, & tree taller */
  264. t->n_levels++;
  265. newroot = RTreeNewNode(t, t->n_levels);
  266. newroot->level = t->n_levels;
  267. /* branch for old root */
  268. b.rect = RTreeNodeCover(t->root, t);
  269. b.child.ptr = t->root;
  270. RTreeAddBranch(&b, newroot, NULL, NULL, NULL, NULL, t);
  271. /* branch for new node created by RTreeInsertRect2() */
  272. b.rect = RTreeNodeCover(newnode, t);
  273. b.child.ptr = newnode;
  274. RTreeAddBranch(&b, newroot, NULL, NULL, NULL, NULL, t);
  275. /* set new root node */
  276. t->root = newroot;
  277. t->n_nodes++;
  278. }
  279. }
  280. }
  281. return result;
  282. }
  283. /*
  284. * Insert a data rectangle into an RTree index structure.
  285. * r pointer to rectangle
  286. * tid data id stored with rectangle, must be > 0
  287. * t RTree where rectangle should be inserted
  288. */
  289. int RTreeInsertRect(struct Rect *r, int tid, struct RTree *t)
  290. {
  291. union Child newchild;
  292. assert(r && t);
  293. t->n_leafs++;
  294. newchild.id = tid;
  295. return RTreeInsertRect1(r, newchild, 0, t);
  296. }
  297. /*
  298. * Allocate space for a node in the list used in DeletRect to
  299. * store Nodes that are too empty.
  300. */
  301. static struct ListNode *RTreeNewListNode(void)
  302. {
  303. return (struct ListNode *)malloc(sizeof(struct ListNode));
  304. /* return new ListNode; */
  305. }
  306. static void RTreeFreeListNode(struct ListNode *p)
  307. {
  308. free(p);
  309. }
  310. /*
  311. * Add a node to the reinsertion list. All its branches will later
  312. * be reinserted into the index structure.
  313. */
  314. static void RTreeReInsertNode(struct Node *n, struct ListNode **ee)
  315. {
  316. register struct ListNode *l;
  317. l = RTreeNewListNode();
  318. l->node = n;
  319. l->next = *ee;
  320. *ee = l;
  321. }
  322. /*
  323. * Delete a rectangle from non-root part of an index structure.
  324. * Called by RTreeDeleteRect. Descends tree non-recursively,
  325. * merges branches on the way back up.
  326. * Returns 1 if record not found, 0 if success.
  327. */
  328. static int
  329. RTreeDeleteRect2(struct Rect *r, union Child child, struct RTree *t,
  330. struct ListNode **ee)
  331. {
  332. int i, notfound = 1;
  333. struct Node *n;
  334. struct stack s[MAXLEVEL];
  335. int top = 0, down = 0;
  336. int minfill;
  337. assert(r && ee && t);
  338. /* add root node position to stack */
  339. s[top].sn = t->root;
  340. s[top].branch_id = 0;
  341. n = s[top].sn;
  342. while (notfound) {
  343. /* go down to level 0, remember path */
  344. if (s[top].sn->level > 0) {
  345. n = s[top].sn;
  346. for (i = s[top].branch_id; i < t->nodecard; i++) {
  347. if (n->branch[i].child.ptr &&
  348. RTreeOverlap(r, &(n->branch[i].rect), t)) {
  349. s[top++].branch_id = i + 1;
  350. /* add next node to stack */
  351. s[top].sn = n->branch[i].child.ptr;
  352. s[top].branch_id = 0;
  353. notfound = 0;
  354. break;
  355. }
  356. }
  357. if (notfound) {
  358. /* nothing else found, go back up */
  359. s[top].branch_id = t->nodecard;
  360. top--;
  361. }
  362. else /* found a way down but not yet the item */
  363. notfound = 1;
  364. }
  365. else {
  366. for (i = 0; i < t->leafcard; i++) {
  367. if (s[top].sn->branch[i].child.id && s[top].sn->branch[i].child.id == child.id) { /* found item */
  368. RTreeDisconnectBranch(s[top].sn, i, t);
  369. t->n_leafs--;
  370. notfound = 0;
  371. break;
  372. }
  373. }
  374. if (notfound) /* continue searching */
  375. top--;
  376. }
  377. }
  378. if (notfound) {
  379. return notfound;
  380. }
  381. /* go back up */
  382. while (top) {
  383. down = top;
  384. top--;
  385. n = s[top].sn;
  386. i = s[top].branch_id - 1;
  387. assert(s[down].sn->level == s[top].sn->level - 1);
  388. minfill = (s[down].sn->level ? t->min_node_fill : t->min_leaf_fill);
  389. if (s[down].sn->count >= minfill) {
  390. /* just update node cover */
  391. s[top].sn->branch[i].rect = RTreeNodeCover(s[down].sn, t);
  392. }
  393. else {
  394. /* not enough entries in child, eliminate child node */
  395. RTreeReInsertNode(s[top].sn->branch[i].child.ptr, ee);
  396. RTreeDisconnectBranch(s[top].sn, i, t);
  397. }
  398. }
  399. return notfound;
  400. }
  401. /*
  402. * should be called by RTreeDeleteRect() only
  403. *
  404. * Delete a data rectangle from an index structure.
  405. * Pass in a pointer to a Rect, the tid of the record, ptr RTree.
  406. * Returns 1 if record not found, 0 if success.
  407. * RTreeDeleteRect1 provides for eliminating the root.
  408. */
  409. static int RTreeDeleteRect1(struct Rect *r, union Child child,
  410. struct RTree *t)
  411. {
  412. int i, maxkids;
  413. struct Node *n;
  414. struct ListNode *reInsertList = NULL;
  415. struct ListNode *e;
  416. assert(r);
  417. assert(t);
  418. if (!RTreeDeleteRect2(r, child, t, &reInsertList)) {
  419. /* found and deleted a data item */
  420. /* reinsert any branches from eliminated nodes */
  421. while (reInsertList) {
  422. t->n_nodes--;
  423. n = reInsertList->node;
  424. maxkids = (n->level > 0 ? t->nodecard : t->leafcard);
  425. for (i = 0; i < maxkids; i++) {
  426. if (n->level > 0) { /* reinsert node branches */
  427. if (n->branch[i].child.ptr) {
  428. RTreeInsertRect1(&(n->branch[i].rect),
  429. n->branch[i].child, n->level, t);
  430. }
  431. }
  432. else { /* reinsert leaf branches */
  433. if (n->branch[i].child.id) {
  434. RTreeInsertRect1(&(n->branch[i].rect),
  435. n->branch[i].child, n->level, t);
  436. }
  437. }
  438. }
  439. e = reInsertList;
  440. reInsertList = reInsertList->next;
  441. RTreeFreeNode(e->node);
  442. RTreeFreeListNode(e);
  443. }
  444. /* check for redundant root (not leaf, 1 child) and eliminate */
  445. n = t->root;
  446. if (n->count == 1 && n->level > 0) {
  447. for (i = 0; i < t->nodecard; i++) {
  448. if (n->branch[i].child.ptr)
  449. break;
  450. }
  451. t->root = n->branch[i].child.ptr;
  452. RTreeFreeNode(n);
  453. }
  454. return 0;
  455. }
  456. else {
  457. return 1;
  458. }
  459. }
  460. /*
  461. * Delete a data rectangle from an index structure.
  462. * Pass in a pointer to a Rect, the tid of the record, ptr RTree.
  463. * Returns 1 if record not found, 0 if success.
  464. * RTreeDeleteRect1 provides for eliminating the root.
  465. *
  466. * RTreeDeleteRect() should be called by external functions instead of
  467. * RTreeDeleteRect1()
  468. * wrapper for RTreeDeleteRect1 not really needed, but restricts
  469. * compile warnings to rtree lib
  470. * this way it's easier to fix if necessary?
  471. */
  472. int RTreeDeleteRect(struct Rect *r, int tid, struct RTree *t)
  473. {
  474. union Child child;
  475. child.id = tid;
  476. return RTreeDeleteRect1(r, child, t);
  477. }