vectorintro.html 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356
  1. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
  2. <html>
  3. <head>
  4. <title>Vector data processing in GRASS GIS</title>
  5. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
  6. <meta name="Author" content="Markus Neteler/GRASS Development Team">
  7. <link rel="stylesheet" href="grassdocs.css" type="text/css">
  8. </head>
  9. <body bgcolor="white">
  10. <img src="grass_logo.png" alt="_\|/_ GRASS logo"><hr align=center size=6 noshade>
  11. <h2>Vector data processing in GRASS GIS</h2>
  12. <h3>Vector maps in general</h3>
  13. A "vector map" is a data layer consisting of a number of sparse features
  14. in geographic space. These might be data points (drill sites), lines
  15. (roads), polygons (park boundary), volumes (3D CAD structure), or some
  16. combination of all these. Typically each feature in the map will be
  17. tied to a set of attribute layers stored in a database (road names,
  18. site ID, geologic type, etc.). As a general rule these can exist in 2D
  19. or 3D space and are independent of the GIS's computation region.
  20. <h3>Vector data import and export</h3>
  21. The <a href="v.in.ogr.html">v.in.ogr</a> module offers a common
  22. interface for many different vector formats. Additionally, it
  23. offers options such as on-the-fly creation of new locations or extension of
  24. the default region to match the extent of the imported vector map.
  25. For special cases, other import modules are available, e.g.
  26. <a href="v.in.ascii.html">v.in.ascii</a> for input from a text file
  27. containing coordinate and attribute data, and
  28. <a href="v.in.db.html">v.in.db</a> for input from a database containing
  29. coordinate and attribute data.
  30. With <a href="v.external.html">v.external</a> external maps can be
  31. virtually linked into a mapset, only pseudo-topology is generated but
  32. the vector geometry is not imported.
  33. The <em>v.out.*</em> set of commands exports to various formats. To import
  34. and export only attribute tables, use <a href="db.in.ogr.html">db.in.ogr</a>
  35. and <a href="db.out.ogr.html">db.out.ogr</a>.
  36. <h3>Metadata</h3>
  37. The <a href="v.info.html">v.info</a> display general information such
  38. as metadata and attribute columns about a vector map including the
  39. history how it was generated. Each map generating command stores the
  40. command history into the metadata (query with <a href="v.info.html">v.info -h mapname</a>).
  41. Metadata such as map title, scale, organization etc. can be updated
  42. with <a href="v.support.html">v.support</a>.
  43. <h3>Vector map operations</h3>
  44. GRASS vector map processing is always performed on the full map.
  45. If this is not desired, the input map has to be clipped to the
  46. current region beforehand (<a href="v.in.region.html">v.in.region</a>,
  47. <a href="v.overlay.html">v.overlay</a>,<a href="v.select.html">v.select</a>).
  48. <h3>Vector model and topology</h3>
  49. GRASS is a topological GIS. This means that adjacent geographic
  50. components in a single vector map are related. For example in a
  51. non-topological GIS if two areas shared a common border that border
  52. would be digitized two times and also stored in duplicate. In a
  53. topological GIS this border exists once and is shared between two
  54. areas. Topological represenation of vector data helps to produce and
  55. maintain vector maps with clean geometry as well as enables certain
  56. analyses that can not be conducted with non-topological or spaghetti
  57. data. In GRASS topological data are refered to as level 2 data and
  58. spaghetti data is referred to as level 1.
  59. <p>
  60. Sometimes topology is not necessary and the additional memory and
  61. space requirements are burdensome to a particular task. Therefore two
  62. modules allow for working level 1 (non-topological) data within
  63. GRASS. The <a href="v.in.ascii.html">v.in.ascii</a> module allows
  64. users to input points without building topology. This is very useful
  65. for large files where memory restrictions may cause difficulties. The
  66. other module which works with level 1 data is
  67. <a href="v.surf.rst.html">v.surf.rst</a> which enables spatial
  68. approximation and topographic analysis from a point or isoline file.
  69. <p> In GRASS, the following vector object types are defined:
  70. <ul>
  71. <li> point: a point; </li>
  72. <li> line: a directed sequence of connected vertices with two endpoints called nodes; </li>
  73. <li> boundary: the border line to describe an area; </li>
  74. <li> centroid: a point within a closed boundary; </li>
  75. <li> area: the topological composition of centroid and boundary; </li>
  76. <li> face: a 3D area; </li>
  77. <li> kernel: a 3D centroid in a volume (not yet implemented); </li>
  78. <li> volume: a 3D corpus, the topological composition of faces and kernel (not yet implemented). </li>
  79. </ul>
  80. <p>
  81. Note that all lines and boundaries can be polylines (with nodes in between).
  82. <p>
  83. Topology also holds information about isles. Isles are located within an
  84. area, not touching the boundaries of the outer area. Isles consist of
  85. one or more areas and are used internally to maintain correct topology
  86. for areas.
  87. <P>
  88. The <a href="v.type.html">v.type</a> module can be used to convert
  89. between vector types if
  90. possible. The <a href="v.build.html">v.build</a> module is used to
  91. generate topology. It optionally allows to extract the erroneous
  92. vector objects into a separate map. Topological errors can be
  93. corrected either manually
  94. within <a href="wxGUI.Vector_Digitizing_Tool.html">wxGUI vector
  95. digitizer</a> or, to some extent, automatically
  96. in <a href="v.clean.html">v.clean</a>. A dedicated vector editing
  97. module is <a href="v.edit.html">v.edit</a> which supports global and
  98. local editing operations.
  99. Adjacent polygons can be found by <a href="v.to.db.html">v.to.db</a>
  100. (see 'sides' option).
  101. <P>
  102. Many operations including extraction, queries, overlay, and export will
  103. only act on features which have been assigned a category number. Typically
  104. a centroid will hold the attribute data for the area between it and its
  105. boundary. Boundaries are not typically given a category ID as it would be
  106. ambiguous as to which area either side of it the attribute data would belong
  107. to. An exception might be when the boundary between two crop-fields is the
  108. center-line of a road, and the category information is an index to the road
  109. name. For everyday use boundaries and centroids can be treated as internal
  110. data types and the user can work directly and more simply with the "area"
  111. meta-feature type.
  112. <h3>Vector object categories and attribute management</h3>
  113. GRASS vectors can be linked to one or many database management systems
  114. (DBMS). The <em>db.*</em> set of commands provides basic SQL support for
  115. attribute management, while the <em>v.db.*</em> set of commands operates
  116. on a table linked to a vector map.
  117. <ul>
  118. <li><b>Categories</b><br>
  119. Categories are used to categorize vector objects and link
  120. attribute(s) to each category. Each vector object can have zero, one or
  121. several categories. Category numbers do not have to be unique for
  122. each vector object, several vector objects can share the same category.
  123. <br>Category numbers are stored both within the geometry file for each
  124. vector object and within the attribute table(s) (usually the "cat"
  125. column). It is not required that attribute table(s) hold an entry for
  126. each category, and attribute table(s) can hold
  127. information about categories not present in the vector geometry file.
  128. This means that e.g. an attribute table can be populated first and then
  129. vector objects can be added to the geometry file with category numbers.
  130. Using <a href="v.category.html">v.category</a>, category numbers can be
  131. printed or maintained.
  132. <br><br></li>
  133. <li><b>Layers</b><br>
  134. It is possible to link the geographic objects in
  135. a vector map to one or more tables. Each link to a distinct
  136. attribute table is called a layer. A link defines which database
  137. driver, database and table is to be used. Each category number in a
  138. geometry file is associated with a layer and corresponds to a row in the
  139. attribute table for this layer (the linking column is usually the "cat"
  140. key column). Using <a href="v.db.connect.html">v.db.connect</a> layers
  141. can be listed or maintained.<br>
  142. Vector objects are not organized in layers. All vector
  143. objects are kept in one geometry file, and topology is maintained for
  144. all vector objects together. GRASS layers only consist of links to
  145. different attribute tables in which vector objects can have zero, one or
  146. more categories. If a vector object has zero categories in a layer, then
  147. it does not appear in that layer. In this fashion some vector objects
  148. may appear in some layers but not in others. The practical benefit of
  149. this system is that it allows placement of thematically distinct but
  150. topologically related objects into a single map (e.g. forests and lakes).
  151. These virtual layers are also useful for linking time series attribute
  152. data to a series of locations that did not change over time. By default
  153. the first layer is active, i.e. the first table corresponds to the first
  154. layer. Further tables are linked to subsequent layers.
  155. <br><br></li>
  156. <li><b>SQL support</b><br>
  157. The DBF driver provides only very limited SQL support (as DBF is not an
  158. SQL DB) while the other DBMS backends (such as SQLite, PostgreSQL, MySQL
  159. etc) provide full SQL support since the SQL commands are sent directly
  160. to the DBMI. SQL commands can be directly executed with
  161. <a href="db.execute.html">db.execute</a>,
  162. <a href="db.select.html">db.select</a> and the other db.* modules.
  163. </li>
  164. </ul>
  165. When creating vector maps from scratch, in general an attribute table must be created and
  166. the table must be populated with one row per category (using <a href="v.to.db.html">v.to.db</a>).
  167. However, this can be performed in a single step using <a href="v.db.addtable.html">v.db.addtable</a>
  168. along with the definition of table column types. Column adding and dropping
  169. can be done with <a HREF="v.db.addcol.html">v.db.addcol</a> and
  170. <a HREF="v.db.dropcol.html">v.db.dropcol</a>. A table column can be renamed with
  171. <a HREF="v.db.renamecol.html">v.db.renamecol</a>. To drop a table from a map, use
  172. <a HREF="v.db.droptable.html">v.db.droptable</a>. Values in a table can be updated
  173. with <a HREF="v.db.update.html">v.db.update</a>. Tables can be joined with with
  174. <a HREF="v.db.join.html">v.db.join</a>.
  175. <h3>Editing vector attributes</h3>
  176. To manually edit attributes of a table, the map has to be
  177. queried in 'edit mode' using <a href="d.what.vect.html">d.what.vect</a>.
  178. To bulk process attributes, it is recommended to use SQL
  179. (<a href="db.execute.html">db.execute</a>).
  180. <h3>Geometry operations</h3>
  181. The module <a href="v.in.region.html">v.in.region</a> saves the
  182. current region boundary into a vector area.
  183. Split vector lines can be changes to polylines by
  184. <a href="v.build.polylines.html">v.build.polylines</a>. Long lines can be
  185. split by <a href="v.split.html">v.split</a> and
  186. <a href="v.segment.html">v.segment</a>.
  187. Buffer and circles can be generated with <a href="v.buffer.html">v.buffer</a>
  188. and <a href="v.parallel.html">v.parallel</a>.
  189. <a href="v.generalize.html">v.generalize</a> is module for generalization of GRASS vector maps.
  190. 2D vector maps can be changed to 3D using
  191. <a href="v.drape.html">v.drape</a> or <a href="v.extrude.html">v.extrude</a>.
  192. If needed, the spatial position of vector points can be perturbed by
  193. <a href="v.perturb.html">v.perturb</a>.
  194. The <a href="v.type.html">v.type</a> command changes between vector
  195. types (see list above).
  196. Projected vector maps can be reprojected with <a href="v.proj.html">v.proj</a>.
  197. Unprojected maps can be geocoded with <a href="v.transform.html">v.transform</a>.
  198. Triangulation and point-to-polygon conversions can be done with <a
  199. href="v.delaunay.html">v.delaunay</a>, <a href="v.hull.html">v.hull</a>,
  200. and <a href="v.voronoi.html">v.voronoi</a>.
  201. The <a href="v.random.html">v.random</a> command generated random points.
  202. <h3>Vector overlays and selections</h3>
  203. Geometric overlay of vector maps is done with <a href="v.patch.html">v.patch</a>,
  204. <a href="v.overlay.html">v.overlay</a> and <a href="v.select.html">v.select</a>,
  205. depending on the combination of vector types.
  206. Vectors can be extracted with <a href="v.extract.html">v.extract</a>
  207. and reclassified with <a href="v.reclass.html">v.reclass</a>.
  208. <h3>Vector statistics</h3>
  209. Statistics can be generated by <a href="v.qcount.html">v.qcount</a>,
  210. <a href="v.sample.html">v.sample</a>, <a href="v.normal.html">v.normal</a>,
  211. and <a href="v.univar.html">v.univar</a>.
  212. Distances between vector objects are calculated with <a href="v.distance.html">v.distance</a>.
  213. <h3>Vector-Raster-DB conversion</h3>
  214. The <a href="v.to.db.html">v.to.db</a> transfers vector information
  215. into database tables.
  216. With <a href="v.to.points.html">v.to.points</a>,
  217. <a href="v.to.rast.html">v.to.rast</a> and <a href="v.to.rast3.html">v.to.rast3</a>
  218. conversions are performed.
  219. <h3>Vector queries</h3>
  220. Vector maps can be queried with <a href="v.what.html">v.what</a> and
  221. <a href="v.what.vect.html">v.what.vect</a>.
  222. <h3>Vector-Raster queries</h3>
  223. Raster values can be transferred to vector maps with
  224. <a href="v.what.rast.html">v.what.rast</a> and
  225. <a href="v.rast.stats">v.rast.stats</a>.
  226. <h3>Vector network analysis</h3>
  227. GRASS provides support for vector network analysis. The following algorithms
  228. are implemented:
  229. <ul>
  230. <li> Vector maintenance: <a href="v.net.html">v.net</a></li>
  231. <li> Shortest path: <a href="d.path.html">d.path</a> and
  232. <a href="v.net.path.html">v.net.path</a></li>
  233. <li> Traveling salesman (round trip): <a href="v.net.salesman.html">v.net.salesman</a></li>
  234. <li> Allocation of sources (create subnetworks, e.g. police station zones):
  235. <a href="v.net.alloc.html">v.net.alloc</a></li>
  236. <li> Minimum Steiner trees (star-like connections, e.g. broadband cable
  237. connections): <a href="v.net.steiner.html">v.net.steiner</a></li>
  238. <li> Iso-distances (from centers): <a href="v.net.iso.html">v.net.iso</a></li>
  239. </ul>
  240. Vector directions are defined by the digitizing direction (a--&gt;--b).
  241. Both directions are supported, network modules provide parameters
  242. to assign attribute columns to the forward and backward direction.
  243. <h3>Vector networks: Linear referencing system (LRS)</h3>
  244. LRS uses linear features and distance measured along those features to
  245. positionate objects. There are the commands
  246. <a href="v.lrs.create.html">v.lrs.create</a> to create a linear reference system,
  247. <a href="v.lrs.label.html">v.lrs.label</a> to create stationing on the LRS,
  248. <a href="v.lrs.segment.html">v.lrs.segment</a> to create points/segments on LRS,
  249. and
  250. <a href="v.lrs.where.html">v.lrs.where</a> to find line id and real km+offset
  251. for given points in vector map using linear reference system.
  252. <p>
  253. The <a href="lrs.html">LRS tutorial</a> explains further details.
  254. <h3>Interpolation and approximation</h3>
  255. Some of the vector modules deal with spatial or volumetric
  256. approximation (also called interpolation):
  257. <a href="v.kernel.html">v.kernel</a>,
  258. <a href="v.surf.idw.html">v.surf.idw</a>,
  259. <a href="v.surf.rst.html">v.surf.rst</a>, and
  260. <a href="v.vol.rst.html">v.vol.rst</a>.
  261. <h3>Lidar data processing</h3>
  262. Lidar point clouds (first and last return) are imported with <a
  263. href="v.in.ascii.html">v.in.ascii</a> (-b flag to not build the
  264. topology). Outlier detection is done with
  265. <a href="v.outlier.html">v.outlier</a> on both first and last return data.
  266. Then, with <a href="v.lidar.edgedetection.html">v.lidar.edgedetection</a>,
  267. edges are detected from last return data. The building are generated by
  268. <a href="v.lidar.growing.html">v.lidar.growing</a> from detected
  269. edges. The resulting data are post-processed with
  270. <a href="v.lidar.correction.html">v.lidar.correction</a>. Finally, the
  271. DTM and DSM are generated with <a href="v.surf.bspline.html">v.surf.bspline</a>
  272. (DTM: uses the 'v.lidar.correction' output; DSM: uses last return output
  273. from outlier detection).
  274. <h3>See also</h3>
  275. <ul>
  276. <li><a href="databaseintro.html">Introduction to GRASS database management</a></li>
  277. <li><a href="rasterintro.html">Introduction to GRASS raster map processing</a></li>
  278. <li><a href="raster3dintro.html">Introduction to GRASS 3D raster map (voxel) processing</a></li>
  279. </ul>
  280. <HR>
  281. <BR>
  282. <a href="index.html">Main index</a> - <a href="vector.html">vector index</a> - <a href="full_index.html">full index</a>
  283. <P>&copy; 2008 <a href="http://grass.osgeo.org">GRASS Development Team</a></P>
  284. </body>
  285. </html>