index.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298
  1. /****************************************************************************
  2. * MODULE: R-Tree library
  3. *
  4. * AUTHOR(S): Antonin Guttman - original code
  5. * Daniel Green (green@superliminal.com) - major clean-up
  6. * and implementation of bounding spheres
  7. * Markus Metz - file-based and memory-based R*-tree
  8. *
  9. * PURPOSE: Multidimensional index
  10. *
  11. * COPYRIGHT: (C) 2010 by the GRASS Development Team
  12. *
  13. * This program is free software under the GNU General Public
  14. * License (>=v2). Read the file COPYING that comes with GRASS
  15. * for details.
  16. *****************************************************************************/
  17. #include <stdlib.h>
  18. #include <sys/types.h>
  19. #include <unistd.h>
  20. #include <assert.h>
  21. #include <grass/gis.h>
  22. #include "index.h"
  23. //#include "card.h"
  24. /*
  25. * Make a new index, empty.
  26. * fp pointer to file holding index, file must be opened as w+
  27. * rootpos postion of rootnode (past any header info)
  28. * ndims number of dimensions
  29. * returns pointer to RTree structure
  30. */
  31. struct RTree *RTreeNewIndex(int fd, off_t rootpos, int ndims)
  32. {
  33. struct RTree *new_rtree;
  34. struct RTree_Node *n;
  35. int i, j;
  36. new_rtree = (struct RTree *)malloc(sizeof(struct RTree));
  37. new_rtree->fd = fd;
  38. new_rtree->rootpos = rootpos;
  39. new_rtree->ndims = ndims;
  40. new_rtree->nsides = 2 * ndims;
  41. /* hack to keep compatibility */
  42. if (ndims < 3)
  43. new_rtree->ndims_alloc = 3;
  44. else
  45. new_rtree->ndims_alloc = ndims;
  46. new_rtree->nsides_alloc = 2 * new_rtree->ndims_alloc;
  47. /* init free nodes */
  48. new_rtree->free_nodes.avail = 0;
  49. new_rtree->free_nodes.alloc = 0;
  50. new_rtree->free_nodes.pos = NULL;
  51. new_rtree->nodesize = sizeof(struct RTree_Node) -
  52. MAXCARD * sizeof(RectReal *) +
  53. MAXCARD * new_rtree->nsides_alloc * sizeof(RectReal);
  54. new_rtree->branchsize = sizeof(struct RTree_Branch) -
  55. sizeof(RectReal *) +
  56. new_rtree->nsides_alloc * sizeof(RectReal);
  57. /* create empty root node */
  58. n = RTreeNewNode(new_rtree, 0);
  59. new_rtree->rootlevel = n->level = 0; /* leaf */
  60. new_rtree->root = NULL;
  61. if (fd > -1) { /* file based */
  62. /* nodecard and leafcard can be adjusted, must NOT be larger than MAXCARD */
  63. new_rtree->nodecard = MAXCARD;
  64. new_rtree->leafcard = MAXCARD;
  65. /* initialize node buffer */
  66. for (i = 0; i < MAXLEVEL; i++) {
  67. new_rtree->nb[i][0].dirty = 0;
  68. new_rtree->nb[i][1].dirty = 0;
  69. new_rtree->nb[i][2].dirty = 0;
  70. new_rtree->nb[i][0].pos = -1;
  71. new_rtree->nb[i][1].pos = -1;
  72. new_rtree->nb[i][2].pos = -1;
  73. /* usage order */
  74. new_rtree->used[i][0] = 2;
  75. new_rtree->used[i][1] = 1;
  76. new_rtree->used[i][2] = 0;
  77. /* alloc memory for rectangles */
  78. for (j = 0; j < MAXCARD; j++) {
  79. RTreeNewRect(&(new_rtree->nb[i][0].n.branch[j].rect), new_rtree);
  80. RTreeNewRect(&(new_rtree->nb[i][1].n.branch[j].rect), new_rtree);
  81. RTreeNewRect(&(new_rtree->nb[i][2].n.branch[j].rect), new_rtree);
  82. RTreeNewRect(&(new_rtree->fs[i].sn.branch[j].rect), new_rtree);
  83. }
  84. }
  85. /* write empty root node */
  86. lseek(new_rtree->fd, rootpos, SEEK_SET);
  87. RTreeWriteNode(n, new_rtree);
  88. new_rtree->nb[0][0].n = *n;
  89. new_rtree->nb[0][0].pos = rootpos;
  90. new_rtree->used[0][0] = 0;
  91. new_rtree->used[0][2] = 2;
  92. RTreeFreeNode(n);
  93. new_rtree->insert_rect = RTreeInsertRectF;
  94. new_rtree->delete_rect = RTreeDeleteRectF;
  95. new_rtree->search_rect = RTreeSearchF;
  96. new_rtree->valid_child = RTreeValidChildF;
  97. }
  98. else { /* memory based */
  99. new_rtree->nodecard = MAXCARD;
  100. new_rtree->leafcard = MAXCARD;
  101. new_rtree->insert_rect = RTreeInsertRectM;
  102. new_rtree->delete_rect = RTreeDeleteRectM;
  103. new_rtree->search_rect = RTreeSearchM;
  104. new_rtree->valid_child = RTreeValidChildM;
  105. new_rtree->root = n;
  106. }
  107. /* minimum number of remaining children for RTreeDeleteRect */
  108. /* NOTE: min fill can be changed if needed, must be < nodecard and leafcard. */
  109. new_rtree->min_node_fill = (new_rtree->nodecard - 2) / 2;
  110. new_rtree->min_leaf_fill = (new_rtree->leafcard - 2) / 2;
  111. /* balance criteria for node splitting */
  112. new_rtree->minfill_node_split = (new_rtree->nodecard - 1) / 2;
  113. new_rtree->minfill_leaf_split = (new_rtree->leafcard - 1) / 2;
  114. new_rtree->n_nodes = 1;
  115. new_rtree->n_leafs = 0;
  116. /* initialize temp variables */
  117. RTreeNewRect(&(new_rtree->p.cover[0]), new_rtree);
  118. RTreeNewRect(&(new_rtree->p.cover[1]), new_rtree);
  119. RTreeNewRect(&(new_rtree->tmpb1.rect), new_rtree);
  120. RTreeNewRect(&(new_rtree->tmpb2.rect), new_rtree);
  121. RTreeNewRect(&(new_rtree->c.rect), new_rtree);
  122. for (i = 0; i <= MAXCARD; i++) {
  123. RTreeNewRect(&(new_rtree->BranchBuf[i].rect), new_rtree);
  124. }
  125. RTreeNewRect(&(new_rtree->rect_0), new_rtree);
  126. RTreeNewRect(&(new_rtree->rect_1), new_rtree);
  127. RTreeNewRect(&(new_rtree->upperrect), new_rtree);
  128. RTreeNewRect(&(new_rtree->orect), new_rtree);
  129. new_rtree->center_n = (RectReal *)malloc(new_rtree->ndims_alloc * sizeof(RectReal));
  130. return new_rtree;
  131. }
  132. void RTreeFreeIndex(struct RTree *t)
  133. {
  134. int i, j;
  135. assert(t);
  136. if (t->fd > -1) {
  137. if (t->free_nodes.alloc)
  138. free(t->free_nodes.pos);
  139. }
  140. else if (t->root)
  141. RTreeDestroyNode(t->root, t->root->level ? t->nodecard : t->leafcard);
  142. if (t->fd > -1) { /* file based */
  143. /* free node buffer */
  144. for (i = 0; i < MAXLEVEL; i++) {
  145. /* free memory for rectangles */
  146. for (j = 0; j < MAXCARD; j++) {
  147. free(t->nb[i][0].n.branch[j].rect.boundary);
  148. free(t->nb[i][1].n.branch[j].rect.boundary);
  149. free(t->nb[i][2].n.branch[j].rect.boundary);
  150. free(t->fs[i].sn.branch[j].rect.boundary);
  151. }
  152. }
  153. }
  154. /* free temp variables */
  155. free(t->p.cover[0].boundary);
  156. free(t->p.cover[1].boundary);
  157. free(t->tmpb1.rect.boundary);
  158. free(t->tmpb2.rect.boundary);
  159. free(t->c.rect.boundary);
  160. for (i = 0; i <= MAXCARD; i++) {
  161. free(t->BranchBuf[i].rect.boundary);
  162. }
  163. free(t->rect_0.boundary);
  164. free(t->rect_1.boundary);
  165. free(t->upperrect.boundary);
  166. free(t->orect.boundary);
  167. free(t->center_n);
  168. free(t);
  169. return;
  170. }
  171. /*
  172. * Search in an index tree for all data retangles that
  173. * overlap or touch the argument rectangle.
  174. * Return the number of qualifying data rects.
  175. */
  176. int RTreeSearch(struct RTree *t, struct RTree_Rect *r, SearchHitCallback *shcb,
  177. void *cbarg)
  178. {
  179. assert(r && t);
  180. return t->search_rect(t, r, shcb, cbarg);
  181. }
  182. /*
  183. * Insert a data rectangle into an RTree index structure.
  184. * r pointer to rectangle
  185. * tid data id stored with rectangle, must be > 0
  186. * t RTree where rectangle should be inserted
  187. */
  188. int RTreeInsertRect(struct RTree_Rect *r, int tid, struct RTree *t)
  189. {
  190. union RTree_Child newchild;
  191. assert(r && t && tid > 0);
  192. t->n_leafs++;
  193. newchild.id = tid;
  194. return t->insert_rect(r, newchild, 0, t);
  195. }
  196. /*
  197. * Delete a data rectangle from an index structure.
  198. * Pass in a pointer to a Rect, the tid of the record, ptr RTree.
  199. * Returns 1 if record not found, 0 if success.
  200. * RTreeDeleteRect1 provides for eliminating the root.
  201. *
  202. * RTreeDeleteRect() should be called by external functions instead of
  203. * RTreeDeleteRect1()
  204. * wrapper for RTreeDeleteRect1 not really needed, but restricts
  205. * compile warnings to rtree lib
  206. * this way it's easier to fix if necessary?
  207. */
  208. int RTreeDeleteRect(struct RTree_Rect *r, int tid, struct RTree *t)
  209. {
  210. union RTree_Child child;
  211. assert(r && t && tid > 0);
  212. child.id = tid;
  213. return t->delete_rect(r, child, t);
  214. }
  215. /*
  216. * Allocate space for a node in the list used in DeleteRect to
  217. * store Nodes that are too empty.
  218. */
  219. struct RTree_ListNode *RTreeNewListNode(void)
  220. {
  221. return (struct RTree_ListNode *)malloc(sizeof(struct RTree_ListNode));
  222. }
  223. void RTreeFreeListNode(struct RTree_ListNode *p)
  224. {
  225. free(p);
  226. }
  227. /*
  228. * Add a node to the reinsertion list. All its branches will later
  229. * be reinserted into the index structure.
  230. */
  231. void RTreeReInsertNode(struct RTree_Node *n, struct RTree_ListNode **ee)
  232. {
  233. struct RTree_ListNode *l = RTreeNewListNode();
  234. l->node = n;
  235. l->next = *ee;
  236. *ee = l;
  237. }
  238. /*
  239. * Free ListBranch
  240. */
  241. void RTreeFreeListBranch(struct RTree_ListBranch *p)
  242. {
  243. free(p->b.rect.boundary);
  244. free(p);
  245. }