index.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230
  1. /****************************************************************************
  2. * MODULE: R-Tree library
  3. *
  4. * AUTHOR(S): Antonin Guttman - original code
  5. * Daniel Green (green@superliminal.com) - major clean-up
  6. * and implementation of bounding spheres
  7. * Markus Metz - file-based and memory-based R*-tree
  8. *
  9. * PURPOSE: Multidimensional index
  10. *
  11. * COPYRIGHT: (C) 2010 by the GRASS Development Team
  12. *
  13. * This program is free software under the GNU General Public
  14. * License (>=v2). Read the file COPYING that comes with GRASS
  15. * for details.
  16. *****************************************************************************/
  17. #include <stdlib.h>
  18. #include <sys/types.h>
  19. #include <unistd.h>
  20. #include <assert.h>
  21. #include <grass/gis.h>
  22. #include "index.h"
  23. #include "card.h"
  24. /*
  25. * Make a new index, empty.
  26. * fp pointer to file holding index, file must be opened as w+
  27. * rootpos postion of rootnode (past any header info)
  28. * ndims number of dimensions
  29. * returns pointer to RTree structure
  30. */
  31. struct RTree *RTreeNewIndex(int fd, off_t rootpos, int ndims)
  32. {
  33. struct RTree *new_rtree;
  34. struct RTree_Node *n;
  35. int i;
  36. new_rtree = (struct RTree *)malloc(sizeof(struct RTree));
  37. new_rtree->fd = fd;
  38. new_rtree->rootpos = rootpos;
  39. new_rtree->ndims = ndims;
  40. new_rtree->nsides = 2 * ndims;
  41. new_rtree->rectsize = sizeof(struct RTree_Rect);
  42. /* init free nodes */
  43. new_rtree->free_nodes.avail = 0;
  44. new_rtree->free_nodes.alloc = 0;
  45. new_rtree->free_nodes.pos = NULL;
  46. new_rtree->nodesize = sizeof(struct RTree_Node);
  47. new_rtree->branchsize = sizeof(struct RTree_Branch);
  48. /* create empty root node */
  49. n = RTreeNewNode(new_rtree, 0);
  50. new_rtree->rootlevel = n->level = 0; /* leaf */
  51. new_rtree->root = NULL;
  52. if (fd > -1) { /* file based */
  53. /* nodecard and leafcard can be adjusted, must NOT be larger than MAXCARD */
  54. new_rtree->nodecard = MAXCARD;
  55. new_rtree->leafcard = MAXCARD;
  56. /* initialize node buffer */
  57. for (i = 0; i < MAXLEVEL; i++) {
  58. new_rtree->nb[i][0].dirty = 0;
  59. new_rtree->nb[i][1].dirty = 0;
  60. new_rtree->nb[i][2].dirty = 0;
  61. new_rtree->nb[i][0].pos = -1;
  62. new_rtree->nb[i][1].pos = -1;
  63. new_rtree->nb[i][2].pos = -1;
  64. /* usage order */
  65. new_rtree->used[i][0] = 2;
  66. new_rtree->used[i][1] = 1;
  67. new_rtree->used[i][2] = 0;
  68. }
  69. /* write empty root node */
  70. lseek(new_rtree->fd, rootpos, SEEK_SET);
  71. RTreeWriteNode(n, new_rtree);
  72. new_rtree->nb[0][0].n = *n;
  73. new_rtree->nb[0][0].pos = rootpos;
  74. new_rtree->used[0][0] = 0;
  75. new_rtree->used[0][2] = 2;
  76. RTreeFreeNode(n);
  77. new_rtree->insert_rect = RTreeInsertRectF;
  78. new_rtree->delete_rect = RTreeDeleteRectF;
  79. new_rtree->search_rect = RTreeSearchF;
  80. new_rtree->valid_child = RTreeValidChildF;
  81. }
  82. else { /* memory based */
  83. new_rtree->nodecard = MAXCARD;
  84. new_rtree->leafcard = MAXCARD;
  85. new_rtree->insert_rect = RTreeInsertRectM;
  86. new_rtree->delete_rect = RTreeDeleteRectM;
  87. new_rtree->search_rect = RTreeSearchM;
  88. new_rtree->valid_child = RTreeValidChildM;
  89. new_rtree->root = n;
  90. }
  91. /* minimum number of remaining children for RTreeDeleteRect */
  92. /* NOTE: min fill can be changed if needed, must be < nodecard and leafcard. */
  93. new_rtree->min_node_fill = (new_rtree->nodecard - 2) / 2;
  94. new_rtree->min_leaf_fill = (new_rtree->leafcard - 2) / 2;
  95. /* balance criteria for node splitting */
  96. new_rtree->minfill_node_split = (new_rtree->nodecard - 1) / 2;
  97. new_rtree->minfill_leaf_split = (new_rtree->leafcard - 1) / 2;
  98. new_rtree->n_nodes = 1;
  99. new_rtree->n_leafs = 0;
  100. return new_rtree;
  101. }
  102. void RTreeFreeIndex(struct RTree *t)
  103. {
  104. assert(t);
  105. if (t->fd > -1) {
  106. if (t->free_nodes.alloc)
  107. free(t->free_nodes.pos);
  108. }
  109. else if (t->root)
  110. RTreeDestroyNode(t->root, t->root->level ? t->nodecard : t->leafcard);
  111. free(t);
  112. return;
  113. }
  114. /*
  115. * Search in an index tree for all data retangles that
  116. * overlap the argument rectangle.
  117. * Return the number of qualifying data rects.
  118. */
  119. int RTreeSearch(struct RTree *t, struct RTree_Rect *r, SearchHitCallback *shcb,
  120. void *cbarg)
  121. {
  122. assert(r && t);
  123. return t->search_rect(t, r, shcb, cbarg);
  124. }
  125. /*
  126. * Insert a data rectangle into an RTree index structure.
  127. * r pointer to rectangle
  128. * tid data id stored with rectangle, must be > 0
  129. * t RTree where rectangle should be inserted
  130. */
  131. int RTreeInsertRect(struct RTree_Rect *r, int tid, struct RTree *t)
  132. {
  133. union RTree_Child newchild;
  134. assert(r && t && tid > 0);
  135. t->n_leafs++;
  136. newchild.id = tid;
  137. return t->insert_rect(r, newchild, 0, t);
  138. }
  139. /*
  140. * Delete a data rectangle from an index structure.
  141. * Pass in a pointer to a Rect, the tid of the record, ptr RTree.
  142. * Returns 1 if record not found, 0 if success.
  143. * RTreeDeleteRect1 provides for eliminating the root.
  144. *
  145. * RTreeDeleteRect() should be called by external functions instead of
  146. * RTreeDeleteRect1()
  147. * wrapper for RTreeDeleteRect1 not really needed, but restricts
  148. * compile warnings to rtree lib
  149. * this way it's easier to fix if necessary?
  150. */
  151. int RTreeDeleteRect(struct RTree_Rect *r, int tid, struct RTree *t)
  152. {
  153. union RTree_Child child;
  154. assert(r && t && tid > 0);
  155. child.id = tid;
  156. return t->delete_rect(r, child, t);
  157. }
  158. /*
  159. * Allocate space for a node in the list used in DeleteRect to
  160. * store Nodes that are too empty.
  161. */
  162. struct RTree_ListNode *RTreeNewListNode(void)
  163. {
  164. return (struct RTree_ListNode *)malloc(sizeof(struct RTree_ListNode));
  165. }
  166. void RTreeFreeListNode(struct RTree_ListNode *p)
  167. {
  168. free(p);
  169. }
  170. /*
  171. * Add a node to the reinsertion list. All its branches will later
  172. * be reinserted into the index structure.
  173. */
  174. void RTreeReInsertNode(struct RTree_Node *n, struct RTree_ListNode **ee)
  175. {
  176. struct RTree_ListNode *l = RTreeNewListNode();
  177. l->node = n;
  178. l->next = *ee;
  179. *ee = l;
  180. }
  181. /*
  182. * Free ListBranch
  183. */
  184. void RTreeFreeListBranch(struct RTree_ListBranch *p)
  185. {
  186. free(p);
  187. }