123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347 |
- #include <math.h>
- #include <stdio.h>
- #include <grass/cdhc.h>
- #include "local_proto.h"
- /* Local function prototypes */
- static double poly(double c[], int nord, double x);
- /*-Algorithm AS 181
- * by J.P. Royston, 1982.
- * Applied Statistics 31(2):176-180
- *
- * Translation to C by James Darrell McCauley, mccauley@ecn.purdue.edu.
- *
- * Calculates Shapiro and Wilk's W statistic and its sig. level
- *
- * Originally used:
- * Auxiliary routines required: Cdhc_alnorm = algorithm AS 66 and Cdhc_nscor2
- * from AS 177.
- * Note: ppnd() from as66 was replaced with ppnd16() from as241.
- */
- void wext(double x[], int n, double ssq, double a[], int n2, double eps,
- double *w, double *pw, int *ifault)
- {
- double eu3, lamda, ybar, sdy, al, un, ww, y, z;
- int i, j, n3, nc;
- static double wa[3] = { 0.118898, 0.133414, 0.327907 };
- static double wb[4] = { -0.37542, -0.492145, -1.124332, -0.199422 };
- static double wc[4] = { -3.15805, 0.729399, 3.01855, 1.558776 };
- static double wd[6] = { 0.480385, 0.318828, 0.0, -0.0241665, 0.00879701,
- 0.002989646
- };
- static double we[6] = { -1.91487, -1.37888, -0.04183209, 0.1066339,
- -0.03513666, -0.01504614
- };
- static double wf[7] = { -3.73538, -1.015807, -0.331885, 0.1773538,
- -0.01638782, -0.03215018, 0.003852646
- };
- static double unl[3] = { -3.8, -3.0, -1.0 };
- static double unh[3] = { 8.6, 5.8, 5.4 };
- static int nc1[3] = { 5, 5, 5 };
- static int nc2[3] = { 3, 4, 5 };
- double c[5];
- int upper = 1;
- static double pi6 = 1.90985932, stqr = 1.04719755;
- static double zero = 0.0, tqr = 0.75, one = 1.0;
- static double onept4 = 1.4, three = 3.0, five = 5.0;
- static double c1[5][3] = {
- {-1.26233, -2.28135, -3.30623},
- {1.87969, 2.26186, 2.76287},
- {0.0649583, 0.0, -0.83484},
- {-0.0475604, 0.0, 1.20857},
- {-0.0139682, -0.00865763, -0.507590}
- };
- static double c2[5][3] = {
- {-0.287696, -1.63638, -5.991908},
- {1.78953, 5.60924, 21.04575},
- {-0.180114, -3.63738, -24.58061},
- {0.0, 1.08439, 13.78661},
- {0.0, 0.0, -2.835295}
- };
- *ifault = 1;
- *pw = one;
- *w = one;
- if (n <= 2)
- return;
- *ifault = 3;
- if (n / 2 != n2)
- return;
- *ifault = 2;
- if (n > 2000)
- return;
- *ifault = 0;
- i = n - 1;
- for (*w = 0.0, j = 0; j < n2; ++j)
- *w += a[j] * (x[i--] - x[j]);
- *w *= *w / ssq;
- if (*w > one) {
- *w = one;
- return;
- }
- else if (n > 6) { /* Get significance level of W */
- /*
- * N between 7 and 2000 ... Transform W to Y, get mean and sd,
- * standardize and get significance level
- */
- if (n <= 20) {
- al = log((double)n) - three;
- lamda = poly(wa, 3, al);
- ybar = exp(poly(wb, 4, al));
- sdy = exp(poly(wc, 4, al));
- }
- else {
- al = log((double)n) - five;
- lamda = poly(wd, 6, al);
- ybar = exp(poly(we, 6, al));
- sdy = exp(poly(wf, 7, al));
- }
- y = pow(one - *w, lamda);
- z = (y - ybar) / sdy;
- *pw = Cdhc_alnorm(z, upper);
- return;
- }
- else {
- /* Deal with N less than 7 (Exact significance level for N = 3). */
- if (*w >= eps) {
- ww = *w;
- if (*w >= eps) {
- ww = *w;
- if (n == 3) {
- *pw = pi6 * (atan(sqrt(ww / (one - ww))) - stqr);
- return;
- }
- un = log((*w - eps) / (one - *w));
- n3 = n - 3;
- if (un >= unl[n3 - 1]) {
- if (un <= onept4) {
- nc = nc1[n3 - 1];
- for (i = 0; i < nc; ++i)
- c[i] = c1[i][n3 - 1];
- eu3 = exp(poly(c, nc, un));
- }
- else {
- if (un > unh[n3 - 1])
- return;
- nc = nc2[n3 - 1];
- for (i = 0; i < nc; ++i)
- c[i] = c2[i][n3 - 1];
- un = log(un); /*alog */
- eu3 = exp(exp(poly(c, nc, un)));
- }
- ww = (eu3 + tqr) / (one + eu3);
- *pw = pi6 * (atan(sqrt(ww / (one - ww))) - stqr);
- return;
- }
- }
- }
- *pw = zero;
- return;
- }
- return;
- }
- /*
- * Algorithm AS 181.1 Appl. Statist. (1982) Vol. 31, No. 2
- *
- * Obtain array A of weights for calculating W
- */
- void wcoef(double a[], int n, int n2, double *eps, int *ifault)
- {
- static double c4[2] = { 0.6869, 0.1678 };
- static double c5[2] = { 0.6647, 0.2412 };
- static double c6[3] = { 0.6431, 0.2806, 0.0875 };
- static double rsqrt2 = 0.70710678;
- double a1star, a1sq, sastar, an;
- int j;
- *ifault = 1;
- if (n <= 2)
- return;
- *ifault = 3;
- if (n / 2 != n2)
- return;
- *ifault = 2;
- if (n > 2000)
- return;
- *ifault = 0;
- if (n > 6) {
- /* Calculate rankits using approximate function Cdhc_nscor2(). (AS177) */
- Cdhc_nscor2(a, n, n2, ifault);
- for (sastar = 0.0, j = 1; j < n2; ++j)
- sastar += a[j] * a[j];
- sastar *= 8.0;
- an = n;
- if (n <= 20)
- an--;
- a1sq = exp(log(6.0 * an + 7.0) - log(6.0 * an + 13.0)
- + 0.5 * (1.0 + (an - 2.0) * log(an + 1.0) - (an - 1.0)
- * log(an + 2.0)));
- a1star = sastar / (1.0 / a1sq - 2.0);
- sastar = sqrt(sastar + 2.0 * a1star);
- a[0] = sqrt(a1star) / sastar;
- for (j = 1; j < n2; ++j)
- a[j] = 2.0 * a[j] / sastar;
- }
- else {
- /* Use exact values for weights */
- a[0] = rsqrt2;
- if (n != 3) {
- if (n - 3 == 3)
- for (j = 0; j < 3; ++j)
- a[j] = c6[j];
- else if (n - 3 == 2)
- for (j = 0; j < 2; ++j)
- a[j] = c5[j];
- else
- for (j = 0; j < 2; ++j)
- a[j] = c4[j];
- /*-
- goto (40,50,60), n3
- 40 do 45 j = 1,2
- 45 a(j) = c4(j)
- goto 70
- 50 do 55 j = 1,2
- 55 a(j) = c5(j)
- goto 70
- 60 do 65 j = 1,3
- 65 a(j) = c6(j)
- */
- }
- }
- /* Calculate the minimum possible value of W */
- *eps = a[0] * a[0] / (1.0 - 1.0 / (double)n);
- return;
- }
- /*
- * Algorithm AS 181.2 Appl. Statist. (1982) Vol. 31, No. 2
- *
- * Calculates the algebraic polynomial of order nored-1 with array of
- * coefficients c. Zero order coefficient is c(1)
- */
- static double poly(double c[], int nord, double x)
- {
- double p;
- int n2, i, j;
- if (nord == 1)
- return c[0];
- p = x * c[nord - 1];
- if (nord != 2) {
- n2 = nord - 2;
- j = n2;
- for (i = 0; i < n2; ++i)
- p = (p + c[j--]) * x;
- }
- return c[0] + p;
- }
- /*
- * AS R63 Appl. Statist. (1986) Vol. 35, No.2
- *
- * A remark on AS 181
- *
- * Calculates Sheppard Cdhc_corrected version of W test.
- *
- * Auxiliary functions required: Cdhc_alnorm = algorithm AS 66, and PPND =
- * algorithm AS 111 (or Cdhc_ppnd7 from AS 241).
- */
- void Cdhc_wgp(double x[], int n, double ssq, double gp, double h, double a[],
- int n2, double eps, double w, double u, double p, int *ifault)
- {
- double zbar, zsd, an1, hh;
- zbar = 0.0;
- zsd = 1.0;
- *ifault = 1;
- if (n < 7)
- return;
- if (gp > 0.0) { /* No Cdhc_correction applied if gp=0. */
- an1 = (double)(n - 1);
- /* Cdhc_correct ssq and find standardized grouping interval (h) */
- ssq = ssq - an1 * gp * gp / 12.0;
- h = gp / sqrt(ssq / an1);
- *ifault = 4;
- if (h > 1.5)
- return;
- }
- wext(x, n, ssq, a, n2, eps, &w, &p, ifault);
- if (*ifault != 0)
- return;
- if (!(p > 0.0 && p < 1.0)) {
- u = 5.0 - 10.0 * p;
- return;
- }
- if (gp > 0.0) {
- /* Cdhc_correct u for grouping interval (n<=100 and n>100 separately) */
- hh = sqrt(h);
- if (n <= 100) {
- zbar = -h * (1.07457 + hh * (-2.8185 + hh * 1.8898));
- zsd = 1.0 + h * (0.50933 + hh * (-0.98305 + hh * 0.7408));
- }
- else {
- zbar = -h * (0.96436 + hh * (-2.1300 + hh * 1.3196));
- zsd = 1.0 + h * (0.2579 + h * 0.15225);
- }
- }
- /* ppnd is AS 111 (Beasley and Springer, 1977) */
- u = (-ppnd16(p) - zbar) / zsd;
- /* Cdhc_alnorm is AS 66 (Hill, 1973) */
- p = Cdhc_alnorm(u, 1);
- return;
- }
|