123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495 |
- /****************************************************************************
- *
- * MODULE: imagery library
- * AUTHOR(S): Markus Metz
- *
- * PURPOSE: Image processing library
- * COPYRIGHT: (C) 2013 by the GRASS Development Team
- *
- * This program is free software under the GNU General Public
- * License (>=v2). Read the file COPYING that comes with GRASS
- * for details.
- *
- *****************************************************************************/
- #include <stdlib.h>
- #include <math.h>
- #include <grass/gis.h>
- #include <grass/imagery.h>
- #include <grass/glocale.h>
- #include <signal.h>
- /* STRUCTURE FOR USE INTERNALLY WITH THESE FUNCTIONS. THESE FUNCTIONS EXPECT
- SQUARE MATRICES SO ONLY ONE VARIABLE IS GIVEN (N) FOR THE MATRIX SIZE */
- struct MATRIX
- {
- int n; /* SIZE OF THIS MATRIX (N x N) */
- double *v;
- };
- /* CALCULATE OFFSET INTO ARRAY BASED ON R/C */
- #define M(row,col) m->v[(((row)-1)*(m->n))+(col)-1]
- #define MSUCCESS 1 /* SUCCESS */
- #define MNPTERR 0 /* NOT ENOUGH POINTS */
- #define MUNSOLVABLE -1 /* NOT SOLVABLE */
- #define MMEMERR -2 /* NOT ENOUGH MEMORY */
- #define MPARMERR -3 /* PARAMETER ERROR */
- #define MINTERR -4 /* INTERNAL ERROR */
- #define MAXORDER 3 /* HIGHEST SUPPORTED ORDER OF TRANSFORMATION */
- #ifndef MAX
- #define MAX(x,y) ((x) > (y) ? (x) : (y))
- #endif
- #ifndef MIN
- #define MIN(x,y) ((x) < (y) ? (x) : (y))
- #endif
- /***********************************************************************
- FUNCTION PROTOTYPES FOR STATIC (INTERNAL) FUNCTIONS
- ************************************************************************/
- static int calccoef(struct Control_Points *, double **, double **);
- static int calcls(struct Control_Points *, struct MATRIX *, double *,
- double *, double *, double *);
- static double tps_base_func(const double x1, const double y1,
- const double x2, const double y2);
- static int solvemat(struct MATRIX *, double *, double *, double *, double *);
- /***********************************************************************
- TRANSFORM A SINGLE COORDINATE PAIR.
- ************************************************************************/
- int I_georef_tps(double e1, /* EASTING TO BE TRANSFORMED */
- double n1, /* NORTHING TO BE TRANSFORMED */
- double *e, /* EASTING, TRANSFORMED */
- double *n, /* NORTHING, TRANSFORMED */
- double *E, /* EASTING COEFFICIENTS */
- double *N, /* NORTHING COEFFICIENTS */
- struct Control_Points *cp,
- int fwd
- )
- {
- int i, j;
- double dist, *pe, *pn;
- if (fwd) {
- pe = cp->e1;
- pn = cp->n1;
- }
- else {
- pe = cp->e2;
- pn = cp->n2;
- }
- /* global affine (1st order poly) */
- *e = E[0] + e1 * E[1] + n1 * E[2];
- *n = N[0] + e1 * N[1] + n1 * N[2];
-
- for (i = 0, j = 0; i < cp->count; i++) {
- if (cp->status[i] > 0) {
- dist = tps_base_func(e1, n1, pe[i], pn[i]);
- *e += E[j + 3] * dist;
- *n += N[j + 3] * dist;
- j++;
- }
- }
- return MSUCCESS;
- }
- /***********************************************************************
- COMPUTE THE FORWARD AND BACKWARD GEOREFFERENCING COEFFICIENTS
- BASED ON A SET OF CONTROL POINTS
- ************************************************************************/
- int I_compute_georef_equations_tps(struct Control_Points *cp,
- double **E12tps, double **N12tps,
- double **E21tps, double **N21tps)
- {
- double *tempptr;
- int numactive; /* NUMBER OF ACTIVE CONTROL POINTS */
- int status, i;
- double xmax, xmin, ymax, ymin;
- double delx, dely;
- double xx, yy;
- double sumx, sumy, sumx2, sumy2, sumxy;
- double SSxx, SSyy, SSxy;
- /* CALCULATE THE NUMBER OF VALID CONTROL POINTS */
- for (i = numactive = 0; i < cp->count; i++) {
- if (cp->status[i] > 0)
- numactive++;
- }
- if (numactive < 3)
- return MNPTERR;
- if (numactive > 100000) /* arbitrary, admittedly */
- return MNPTERR;
- xmin = xmax = cp->e1[0];
- ymin = ymax = cp->n1[0];
- sumx = sumy = sumx2 = sumy2 = sumxy = 0.0;
- for (i = 0; i < cp->count; i++ ) {
- if (cp->status[i] > 0) {
- xx = cp->e1[i];
- yy = cp->n1[i];
-
- xmax = MAX(xmax, xx);
- xmin = MIN(xmin, xx);
- ymax = MAX(ymax, yy);
- ymin = MIN(ymin, yy);
-
- sumx += xx;
- sumx2 += xx * xx;
- sumy += yy;
- sumy2 += yy * yy;
- sumxy += xx * yy;
- }
- }
- delx = xmax - xmin;
- dely = ymax - ymin;
- SSxx = sumx2 - sumx * sumx / numactive;
- SSyy = sumy2 - sumy * sumy / numactive;
- SSxy = sumxy - sumx * sumy / numactive;
-
- if (delx < 0.001 * dely || dely < 0.001 * delx ||
- fabs(SSxy * SSxy / (SSxx * SSyy)) > 0.99) {
- /* points are colinear */
- return MUNSOLVABLE;
- }
- xmin = xmax = cp->e2[0];
- ymin = ymax = cp->n2[0];
- sumx = sumy = sumx2 = sumy2 = sumxy = 0.0;
- for (i = 0; i < cp->count; i++ ) {
- if (cp->status[i] > 0) {
- xx = cp->e2[i];
- yy = cp->n2[i];
-
- xmax = MAX(xmax, xx);
- xmin = MIN(xmin, xx);
- ymax = MAX(ymax, yy);
- ymin = MIN(ymin, yy);
-
- sumx += xx;
- sumx2 += xx * xx;
- sumy += yy;
- sumy2 += yy * yy;
- sumxy += xx * yy;
- }
- }
- delx = xmax - xmin;
- dely = ymax - ymin;
- SSxx = sumx2 - sumx * sumx / numactive;
- SSyy = sumy2 - sumy * sumy / numactive;
- SSxy = sumxy - sumx * sumy / numactive;
-
- if (delx < 0.001 * dely || dely < 0.001 * delx ||
- fabs(SSxy * SSxy / (SSxx * SSyy)) > 0.99) {
- /* points are colinear */
- return MUNSOLVABLE;
- }
- /* CALCULATE THE FORWARD TRANSFORMATION COEFFICIENTS */
- G_message(_("Calculating forward transformation coefficients"));
- status = calccoef(cp, E12tps, N12tps);
- if (status != MSUCCESS)
- return status;
- /* SWITCH THE 1 AND 2 EASTING AND NORTHING ARRAYS */
- tempptr = cp->e1;
- cp->e1 = cp->e2;
- cp->e2 = tempptr;
- tempptr = cp->n1;
- cp->n1 = cp->n2;
- cp->n2 = tempptr;
- /* CALCULATE THE BACKWARD TRANSFORMATION COEFFICIENTS */
- G_message(_("Calculating backward transformation coefficients"));
- status = calccoef(cp, E21tps, N21tps);
- /* SWITCH THE 1 AND 2 EASTING AND NORTHING ARRAYS BACK */
- tempptr = cp->e1;
- cp->e1 = cp->e2;
- cp->e2 = tempptr;
- tempptr = cp->n1;
- cp->n1 = cp->n2;
- cp->n2 = tempptr;
- return status;
- }
- /***********************************************************************
- COMPUTE THE GEOREFFERENCING COEFFICIENTS
- BASED ON A SET OF CONTROL POINTS
- ************************************************************************/
- static int calccoef(struct Control_Points *cp, double **E, double **N)
- {
- struct MATRIX m;
- double *a;
- double *b;
- int numactive; /* NUMBER OF ACTIVE CONTROL POINTS */
- int status, i;
- /* CALCULATE THE NUMBER OF VALID CONTROL POINTS */
- for (i = numactive = 0; i < cp->count; i++) {
- if (cp->status[i] > 0)
- numactive++;
- }
- /* INITIALIZE MATRIX */
-
- m.n = numactive + 3;
- m.v = G_calloc(m.n * m.n, sizeof(double));
- if (m.v == NULL)
- G_fatal_error(_("%s: out of memory"), "I_compute_georef_equations_tps()");
- a = G_calloc(m.n, sizeof(double));
- if (a == NULL)
- G_fatal_error(_("%s: out of memory"), "I_compute_georef_equations_tps()");
- b = G_calloc(m.n, sizeof(double));
- if (b == NULL)
- G_fatal_error(_("%s: out of memory"), "I_compute_georef_equations_tps()");
- /* equation coefficients */
- *E = G_calloc(m.n, sizeof(double));
- if (*E == NULL)
- G_fatal_error(_("%s: out of memory"), "I_compute_georef_equations_tps()");
- *N = G_calloc(m.n, sizeof(double));
- if (*N == NULL)
- G_fatal_error(_("%s: out of memory"), "I_compute_georef_equations_tps()");
- status = calcls(cp, &m, a, b, *E, *N);
- G_free(m.v);
- G_free(a);
- G_free(b);
- return status;
- }
- /***********************************************************************
- CALCULATE THE TRANSFORMATION COEFFICIENTS FOR THIN PLATE SPLINE
- INTERPOLATION.
- THIS ROUTINE USES THE LEAST SQUARES METHOD TO COMPUTE THE COEFFICIENTS.
- ************************************************************************/
- static int calcls(struct Control_Points *cp, struct MATRIX *m,
- double a[], double b[],
- double E[], /* EASTING COEFFICIENTS */
- double N[] /* NORTHING COEFFICIENTS */
- )
- {
- int i, j, n, o, numactive = 0;
- double dist = 0.0, dx, dy, regularization;
- /* INITIALIZE THE MATRIX AND THE TWO COLUMN VECTORS */
- for (i = 1; i <= m->n; i++) {
- for (j = i; j <= m->n; j++) {
- M(i, j) = 0.0;
- if (i != j)
- M(j, i) = 0.0;
- }
- a[i - 1] = b[i - 1] = 0.0;
- }
- /* SUM THE UPPER HALF OF THE MATRIX AND THE COLUMN VECTORS ACCORDING TO
- THE LEAST SQUARES METHOD OF SOLVING OVER DETERMINED SYSTEMS */
- for (n = 0; n < cp->count; n++) {
- if (cp->status[n] > 0) {
- a[numactive + 3] = cp->e2[n];
- b[numactive + 3] = cp->n2[n];
- numactive++;
- M(1, numactive + 3) = 1.0;
- M(2, numactive + 3) = cp->e1[n];
- M(3, numactive + 3) = cp->n1[n];
- M(numactive + 3, 1) = 1.0;
- M(numactive + 3, 2) = cp->e1[n];
- M(numactive + 3, 3) = cp->n1[n];
- }
- }
- if (numactive < m->n - 3)
- return MINTERR;
- i = 0;
- for (n = 0; n < cp->count; n++) {
- if (cp->status[n] > 0) {
- i++;
- j = 0;
- for (o = 0; o <= n; o++) {
- if (cp->status[o] > 0) {
- j++;
- M(i + 3, j + 3) = tps_base_func(cp->e1[n], cp->n1[n],
- cp->e1[o], cp->n1[o]);
- if (i != j)
- M(j + 3, i + 3) = M(i + 3, j + 3);
-
- dx = cp->e1[n] - cp->e1[o];
- dy = cp->n1[n] - cp->n1[o];
- dist += sqrt(dx * dx + dy * dy);
- }
- }
- }
- }
-
- /* regularization */
- dist /= (numactive * numactive);
- regularization = 0.01 * dist * dist;
-
- /* set diagonal to regularization, but not the first 3x3 (global affine) */
- return solvemat(m, a, b, E, N);
- }
- /***********************************************************************
- SOLVE FOR THE 'E' AND 'N' COEFFICIENTS BY USING A SOMEWHAT MODIFIED
- GAUSSIAN ELIMINATION METHOD.
- | M11 M12 ... M1n | | E0 | | a0 |
- | M21 M22 ... M2n | | E1 | = | a1 |
- | . . . . | | . | | . |
- | Mn1 Mn2 ... Mnn | | En-1 | | an-1 |
- and
- | M11 M12 ... M1n | | N0 | | b0 |
- | M21 M22 ... M2n | | N1 | = | b1 |
- | . . . . | | . | | . |
- | Mn1 Mn2 ... Mnn | | Nn-1 | | bn-1 |
- ************************************************************************/
- static int solvemat(struct MATRIX *m, double a[], double b[], double E[],
- double N[])
- {
- int i, j, i2, j2, imark;
- double factor, temp;
- double pivot; /* ACTUAL VALUE OF THE LARGEST PIVOT CANDIDATE */
- for (i = 1; i <= m->n; i++) {
- G_percent(i - 1, m->n, 4);
- j = i;
- /* find row with largest magnitude value for pivot value */
- pivot = M(i, j);
- imark = i;
- for (i2 = i + 1; i2 <= m->n; i2++) {
- temp = fabs(M(i2, j));
- if (temp > fabs(pivot)) {
- pivot = M(i2, j);
- imark = i2;
- }
- }
- /* if the pivot is very small then the points are nearly co-linear */
- /* co-linear points result in an undefined matrix, and nearly */
- /* co-linear points results in a solution with rounding error */
- if (pivot == 0.0)
- return MUNSOLVABLE;
- /* if row with highest pivot is not the current row, switch them */
- if (imark != i) {
- for (j2 = 1; j2 <= m->n; j2++) {
- temp = M(imark, j2);
- M(imark, j2) = M(i, j2);
- M(i, j2) = temp;
- }
- temp = a[imark - 1];
- a[imark - 1] = a[i - 1];
- a[i - 1] = temp;
- temp = b[imark - 1];
- b[imark - 1] = b[i - 1];
- b[i - 1] = temp;
- }
- /* compute zeros above and below the pivot, and compute
- values for the rest of the row as well */
- for (i2 = 1; i2 <= m->n; i2++) {
- if (i2 != i) {
- factor = M(i2, j) / pivot;
- for (j2 = j; j2 <= m->n; j2++)
- M(i2, j2) -= factor * M(i, j2);
- a[i2 - 1] -= factor * a[i - 1];
- b[i2 - 1] -= factor * b[i - 1];
- }
- }
- }
- G_percent(1, 1, 1);
- /* SINCE ALL OTHER VALUES IN THE MATRIX ARE ZERO NOW, CALCULATE THE
- COEFFICIENTS BY DIVIDING THE COLUMN VECTORS BY THE DIAGONAL VALUES. */
- for (i = 1; i <= m->n; i++) {
- E[i - 1] = a[i - 1] / M(i, i);
- N[i - 1] = b[i - 1] / M(i, i);
- }
- return MSUCCESS;
- }
- static double tps_base_func(const double x1, const double y1,
- const double x2, const double y2)
- {
- /* official: r * r * log(r) */
- double dist;
- if ((x1 == x2) && (y1 == y2))
- return 0.0;
- dist = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1);
- return dist * log(dist) * 0.5;
- }
|