123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550 |
- /****************************************************************************
- *
- * MODULE: r.gwflow
- *
- * AUTHOR(S): Original author
- * Soeren Gebbert soerengebbert <at> gmx <dot> de
- * 27 11 2006 Berlin
- * PURPOSE: Calculates confiend and unconfined transient two dimensional groundwater flow
- *
- * COPYRIGHT: (C) 2006 by the GRASS Development Team
- *
- * This program is free software under the GNU General Public
- * License (>=v2). Read the file COPYING that comes with GRASS
- * for details.
- *
- *****************************************************************************/
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <math.h>
- #include <grass/gis.h>
- #include <grass/raster.h>
- #include <grass/gmath.h>
- #include <grass/glocale.h>
- #include <grass/N_pde.h>
- #include <grass/N_gwflow.h>
- /*- Parameters and global variables -----------------------------------------*/
- typedef struct
- {
- struct Option *output, *phead, *status, *hc_x, *hc_y, *q, *s, *r, *top,
- *bottom, *vector_x, *vector_y, *budget, *type,
- *river_head, *river_bed, *river_leak, *drain_bed, *drain_leak,
- *dt, *maxit, *innerit, *error, *solver;
- struct Flag *full_les;
- } paramType;
- paramType param; /*Parameters */
- /*- prototypes --------------------------------------------------------------*/
- static void set_params(void); /*Fill the paramType structure */
- static void copy_result(N_array_2d * status, N_array_2d * phead_start,
- double *result, struct Cell_head *region,
- N_array_2d * target);
- static N_les *create_solve_les(N_geom_data * geom, N_gwflow_data2d * data,
- N_les_callback_2d * call, const char *solver, int maxit,
- double error);
- /* ************************************************************************* */
- /* Set up the arguments we are expecting ********************************** */
- /* ************************************************************************* */
- void set_params(void)
- {
- param.phead = G_define_standard_option(G_OPT_R_INPUT);
- param.phead->key = "phead";
- param.phead->description = _("Name of input raster map with initial piezometric head in [m]");
- param.status = G_define_standard_option(G_OPT_R_INPUT);
- param.status->key = "status";
- param.status->description =
- _("Name of input raster map providing boundary condition status: 0-inactive, 1-active, 2-dirichlet");
- param.hc_x =G_define_standard_option(G_OPT_R_INPUT);
- param.hc_x->key = "hc_x";
- param.hc_x->description =
- _("Name of input raster map with x-part of the hydraulic conductivity tensor in [m/s]");
- param.hc_y = G_define_standard_option(G_OPT_R_INPUT);
- param.hc_y->key = "hc_y";
- param.hc_y->description =
- _("Name of input raster map with y-part of the hydraulic conductivity tensor in [m/s]");
- param.q = G_define_standard_option(G_OPT_R_INPUT);
- param.q->key = "q";
- param.q->required = NO;
- param.q->description = _("Name of input raster map with water sources and sinks in [m^3/s]");
- param.s = G_define_standard_option(G_OPT_R_INPUT);
- param.s->key = "s";
- param.s->description = _("Name of input raster map with storativity for confined or effective porosity for unconfined groundwater flow booth in [-] ");
- param.r = G_define_standard_option(G_OPT_R_INPUT);
- param.r->key = "recharge";
- param.r->required = NO;
- param.r->guisection = _("Recharge");
- param.r->description =
- _("Recharge input raster map e.g: 6*10^-9 per cell in [m^3/s*m^2]");
- param.top = G_define_standard_option(G_OPT_R_INPUT);
- param.top->key = "top";
- param.top->description = _("Name of input raster map describing the top surface of the aquifer in [m]");
- param.bottom = G_define_standard_option(G_OPT_R_INPUT);
- param.bottom->key = "bottom";
- param.bottom->description = _("Name of input raster map describing the bottom surface of the aquifer in [m]");
- param.output = G_define_standard_option(G_OPT_R_OUTPUT);
- param.output->key = "output";
- param.output->description = _("Output raster map storing the numerical result [m]");
- param.vector_x = G_define_standard_option(G_OPT_R_OUTPUT);
- param.vector_x->key = "vx";
- param.vector_x->required = NO;
- param.vector_x->description =
- _("Output raster map to store the groundwater filter velocity vector part in x direction [m/s]");
- param.vector_y = G_define_standard_option(G_OPT_R_OUTPUT);
- param.vector_y->key = "vy";
- param.vector_y->required = NO;
- param.vector_y->description =
- _("Output raster map to store the groundwater filter velocity vector part in y direction [m/s]");
- param.budget = G_define_standard_option(G_OPT_R_OUTPUT);
- param.budget->key = "budget";
- param.budget->required = NO;
- param.budget->description =
- _("Output raster map to store the groundwater budget for each cell [m^3/s]");
- param.type = G_define_option();
- param.type->key = "type";
- param.type->type = TYPE_STRING;
- param.type->required = YES;
- param.type->answer = "confined";
- param.type->options = "confined,unconfined";
- param.type->description = _("The type of groundwater flow");
- /*Variants of the cauchy boundary condition */
- param.river_bed = G_define_standard_option(G_OPT_R_INPUT);
- param.river_bed->key = "river_bed";
- param.river_bed->required = NO;
- param.river_bed->description = _("Name of input raster map providing the height of the river bed in [m]");
- param.river_bed->guisection = "River";
- param.river_head = G_define_standard_option(G_OPT_R_INPUT);
- param.river_head->key = "river_head";
- param.river_head->required = NO;
- param.river_head->guisection = "River";
- param.river_head->description =
- _("Name of input raster map providing the water level (head) of the river with leakage connection in [m]");
- param.river_leak = G_define_standard_option(G_OPT_R_INPUT);
- param.river_leak->key = "river_leak";
- param.river_leak->required = NO;
- param.river_leak->guisection = "River";
- param.river_leak->description =
- _("Name of input raster map providing the leakage coefficient of the river bed in [1/s].");
- param.drain_bed = G_define_standard_option(G_OPT_R_INPUT);
- param.drain_bed->key = "drain_bed";
- param.drain_bed->type = TYPE_STRING;
- param.drain_bed->required = NO;
- param.drain_bed->gisprompt = "old,raster,raster";
- param.drain_bed->guisection = "Drainage";
- param.drain_bed->description = _("Name of input raster map providing the height of the drainage bed in [m]");
- param.drain_leak = G_define_standard_option(G_OPT_R_INPUT);
- param.drain_leak->key = "drain_leak";
- param.drain_leak->required = NO;
- param.drain_leak->guisection = "Drainage";
- param.drain_leak->description =
- _("Name of input raster map providing the leakage coefficient of the drainage bed in [1/s]");
- param.dt = N_define_standard_option(N_OPT_CALC_TIME);
- param.maxit = N_define_standard_option(N_OPT_MAX_ITERATIONS);
- param.innerit = N_define_standard_option(N_OPT_MAX_ITERATIONS);
- param.innerit->description =_("The maximum number of iterations in the linearization approach");
- param.innerit->answer = "25";
- param.error = N_define_standard_option(N_OPT_ITERATION_ERROR);
- param.solver = N_define_standard_option(N_OPT_SOLVER_SYMM);
- param.solver->options = "cg,pcg,cholesky";
- param.full_les = G_define_flag();
- param.full_les->key = 'f';
- param.full_les->guisection = "Solver";
- param.full_les->description = _("Allocate a full quadratic linear equation system,"
- " default is a sparse linear equation system.");
- }
- /* ************************************************************************* */
- /* Main function *********************************************************** */
- /* ************************************************************************* */
- int main(int argc, char *argv[])
- {
- struct GModule *module = NULL;
- N_gwflow_data2d *data = NULL;
- N_geom_data *geom = NULL;
- N_les *les = NULL;
- N_les_callback_2d *call = NULL;
- double *tmp_vect = NULL;
- struct Cell_head region;
- double error, max_norm = 0, tmp;
- int maxit, i, innerit, inner_count = 0;
- char *solver;
- int x, y, stat;
- N_gradient_field_2d *field = NULL;
- N_array_2d *xcomp = NULL;
- N_array_2d *ycomp = NULL;
- char *buff = NULL;
- int with_river = 0, with_drain = 0;
- /* Initialize GRASS */
- G_gisinit(argv[0]);
- module = G_define_module();
- G_add_keyword(_("raster"));
- G_add_keyword(_("groundwater flow"));
- G_add_keyword(_("hydrology"));
- module->description =
- _("Numerical calculation program for transient, confined and unconfined groundwater flow in two dimensions.");
- /* Get parameters from user */
- set_params();
- if (G_parser(argc, argv))
- exit(EXIT_FAILURE);
- /* Make sure that the current projection is not lat/long */
- if ((G_projection() == PROJECTION_LL))
- G_fatal_error(_("Lat/Long location is not supported by %s. Please reproject map first."),
- G_program_name());
- /*Check the river parameters */
- if (param.river_leak->answer == NULL && param.river_bed->answer == NULL &&
- param.river_head->answer == NULL) {
- with_river = 0;
- }
- else if (param.river_leak->answer != NULL &&
- param.river_bed->answer != NULL &&
- param.river_head->answer != NULL) {
- with_river = 1;
- }
- else {
- G_fatal_error
- (_("Please provide river_head, river_leak and river_bed maps"));
- }
- /*Check the drainage parameters */
- if (param.drain_leak->answer == NULL && param.drain_bed->answer == NULL) {
- with_drain = 0;
- }
- else if (param.drain_leak->answer != NULL &&
- param.drain_bed->answer != NULL) {
- with_drain = 1;
- }
- else {
- G_fatal_error(_("Please provide drain_head and drain_leak maps"));
- }
- /*Set the maximum iterations */
- sscanf(param.maxit->answer, "%i", &(maxit));
- /*Set the maximum number of inner iterations */
- sscanf(param.innerit->answer, "%i", &(innerit));
- /*Set the calculation error break criteria */
- sscanf(param.error->answer, "%lf", &(error));
- /*set the solver */
- solver = param.solver->answer;
- if (strcmp(solver, G_MATH_SOLVER_DIRECT_CHOLESKY) == 0 && !param.full_les->answer)
- G_fatal_error(_("The cholesky solver dos not work with sparse matrices. "
- "You may choose a full filled quadratic matrix, flag -f."));
- /*get the current region */
- G_get_set_window(®ion);
- /*allocate the geometry structure for geometry and area calculation */
- geom = N_init_geom_data_2d(®ion, geom);
- /*Set the function callback to the groundwater flow function */
- call = N_alloc_les_callback_2d();
- N_set_les_callback_2d_func(call, (*N_callback_gwflow_2d)); /*gwflow 2d */
- /*Allocate the groundwater flow data structure */
- data =
- N_alloc_gwflow_data2d(geom->cols, geom->rows, with_river, with_drain);
- /* set the groundwater type */
- if (param.type->answer) {
- if (strncmp("unconfined", param.type->answer, 10) == 0) {
- data->gwtype = N_GW_UNCONFINED;
- }
- else {
- data->gwtype = N_GW_CONFINED;
- }
- }
- /*Set the calculation time */
- sscanf(param.dt->answer, "%lf", &(data->dt));
- G_message(_("Calculation time: %g"), data->dt);
- /*read all input maps into the memory and take care of the
- * null values.*/
- N_read_rast_to_array_2d(param.phead->answer, data->phead);
- N_convert_array_2d_null_to_zero(data->phead);
- N_copy_array_2d(data->phead, data->phead_start);
- N_read_rast_to_array_2d(param.status->answer, data->status);
- N_convert_array_2d_null_to_zero(data->status);
- N_read_rast_to_array_2d(param.hc_x->answer, data->hc_x);
- N_convert_array_2d_null_to_zero(data->hc_x);
- N_read_rast_to_array_2d(param.hc_y->answer, data->hc_y);
- N_convert_array_2d_null_to_zero(data->hc_y);
- N_read_rast_to_array_2d(param.s->answer, data->s);
- N_convert_array_2d_null_to_zero(data->s);
- N_read_rast_to_array_2d(param.top->answer, data->top);
- N_convert_array_2d_null_to_zero(data->top);
- N_read_rast_to_array_2d(param.bottom->answer, data->bottom);
- N_convert_array_2d_null_to_zero(data->bottom);
- /*river is optional */
- if (with_river) {
- N_read_rast_to_array_2d(param.river_bed->answer, data->river_bed);
- N_read_rast_to_array_2d(param.river_head->answer, data->river_head);
- N_read_rast_to_array_2d(param.river_leak->answer, data->river_leak);
- N_convert_array_2d_null_to_zero(data->river_bed);
- N_convert_array_2d_null_to_zero(data->river_head);
- N_convert_array_2d_null_to_zero(data->river_leak);
- }
- /*drainage is optional */
- if (with_drain) {
- N_read_rast_to_array_2d(param.drain_bed->answer, data->drain_bed);
- N_read_rast_to_array_2d(param.drain_leak->answer, data->drain_leak);
- N_convert_array_2d_null_to_zero(data->drain_bed);
- N_convert_array_2d_null_to_zero(data->drain_leak);
- }
- /*Recharge is optional */
- if (param.r->answer) {
- N_read_rast_to_array_2d(param.r->answer, data->r);
- N_convert_array_2d_null_to_zero(data->r);
- }
- /*Sources or sinks are optional */
- if (param.q->answer) {
- N_read_rast_to_array_2d(param.q->answer, data->q);
- N_convert_array_2d_null_to_zero(data->q);
- }
- /* Set the inactive values to zero, to assure a no flow boundary */
- for (y = 0; y < geom->rows; y++) {
- for (x = 0; x < geom->cols; x++) {
- stat = N_get_array_2d_c_value(data->status, x, y);
- if (stat == N_CELL_INACTIVE) { /*only inactive cells */
- N_put_array_2d_d_value(data->hc_x, x, y, 0);
- N_put_array_2d_d_value(data->hc_y, x, y, 0);
- N_put_array_2d_d_value(data->s, x, y, 0);
- N_put_array_2d_d_value(data->q, x, y, 0);
- }
- }
- }
- /*assemble the linear equation system and solve it */
- les = create_solve_les(geom, data, call, solver, maxit, error);
- /* copy the result into the phead array for output or unconfined calculation */
- copy_result(data->status, data->phead_start, les->x, ®ion,
- data->phead);
- N_convert_array_2d_null_to_zero(data->phead);
- /****************************************************/
- /*explicite calculation of free groundwater surface */
- /****************************************************/
- if (data->gwtype == N_GW_UNCONFINED) {
- /* allocate memory and copy the result into a new temporal vector */
- tmp_vect = (double *)G_calloc(les->rows, sizeof(double));
- /*copy data */
- for (i = 0; i < les->rows; i++)
- tmp_vect[i] = les->x[i];
- /*count the number of inner iterations */
- inner_count = 0;
- do {
- G_message(_("Calculation of unconfined groundwater flow loop %i"),
- inner_count + 1);
- /* we will allocate a new les for each loop */
- if (les)
- N_free_les(les);
- /*assemble the linear equation system and solve it */
- les =
- create_solve_les(geom, data, call, solver, maxit, error);
- /*calculate the maximum norm of the groundwater height difference */
- tmp = 0;
- max_norm = 0;
- for (i = 0; i < les->rows; i++) {
- tmp = fabs(les->x[i] - tmp_vect[i]);
- if (max_norm < tmp)
- max_norm = tmp;
- /*copy the result */
- tmp_vect[i] = les->x[i];
- }
- G_message(_("Maximum difference between this and last increment: %g"),
- max_norm);
- /* copy the result into the phead array */
- copy_result(data->status, data->phead_start, les->x, ®ion,
- data->phead);
- N_convert_array_2d_null_to_zero(data->phead);
- /**/ inner_count++;
- }
- while (max_norm > 0.01 && inner_count < innerit);
- if (tmp_vect)
- free(tmp_vect);
- }
- /*release the memory */
- if (les)
- N_free_les(les);
- /* Compute the water budget for each cell */
- N_array_2d *budget = N_alloc_array_2d(geom->cols, geom->rows, 1, DCELL_TYPE);
- N_gwflow_2d_calc_water_budget(data, geom, budget);
- /*write the result to the output file */
- N_write_array_2d_to_rast(data->phead, param.output->answer);
- /*Write the water balance */
- if(param.budget->answer)
- {
- N_write_array_2d_to_rast(budget, param.budget->answer);
- }
- /*Compute the the velocity field if required and write the result into two raster maps */
- if (param.vector_x->answer && param.vector_y->answer) {
- field =
- N_compute_gradient_field_2d(data->phead, data->hc_x, data->hc_y,
- geom, NULL);
- xcomp = N_alloc_array_2d(geom->cols, geom->rows, 1, DCELL_TYPE);
- ycomp = N_alloc_array_2d(geom->cols, geom->rows, 1, DCELL_TYPE);
- N_compute_gradient_field_components_2d(field, xcomp, ycomp);
- N_write_array_2d_to_rast(xcomp, param.vector_x->answer);
- N_write_array_2d_to_rast(ycomp, param.vector_y->answer);
- if (buff)
- G_free(buff);
- if (xcomp)
- N_free_array_2d(xcomp);
- if (ycomp)
- N_free_array_2d(ycomp);
- if (field)
- N_free_gradient_field_2d(field);
- }
- if(budget)
- N_free_array_2d(budget);
- if (data)
- N_free_gwflow_data2d(data);
- if (geom)
- N_free_geom_data(geom);
- if (call)
- G_free(call);
- return (EXIT_SUCCESS);
- }
- /* ************************************************************************* */
- /* this function copies the result into a N_array_2d struct */
- /* ************************************************************************* */
- void
- copy_result(N_array_2d * status, N_array_2d * phead_start, double *result,
- struct Cell_head *region, N_array_2d * target)
- {
- int y, x, rows, cols, count, stat;
- double d1 = 0;
- DCELL val;
- rows = region->rows;
- cols = region->cols;
- count = 0;
- for (y = 0; y < rows; y++) {
- G_percent(y, rows - 1, 10);
- for (x = 0; x < cols; x++) {
- stat = N_get_array_2d_c_value(status, x, y);
- if (stat == N_CELL_ACTIVE) { /*only active cells */
- d1 = result[count];
- val = (DCELL) d1;
- count++;
- }
- else if (stat == N_CELL_DIRICHLET) { /*dirichlet cells */
- d1 = N_get_array_2d_d_value(phead_start, x, y);
- val = (DCELL) d1;
- count++;
- }
- else {
- Rast_set_null_value(&val, 1, DCELL_TYPE);
- }
- N_put_array_2d_d_value(target, x, y, val);
- }
- }
- return;
- }
- /* *************************************************************** */
- /* ***** create and solve the linear equation system ************* */
- /* *************************************************************** */
- N_les *create_solve_les(N_geom_data * geom, N_gwflow_data2d * data,
- N_les_callback_2d * call, const char *solver, int maxit,
- double error)
- {
- N_les *les;
- /*assemble the linear equation system */
- if (!param.full_les->answer)
- les = N_assemble_les_2d_dirichlet(N_SPARSE_LES, geom, data->status, data->phead, (void *)data, call);
- else
- les = N_assemble_les_2d_dirichlet(N_NORMAL_LES, geom, data->status, data->phead, (void *)data, call);
- N_les_integrate_dirichlet_2d(les, geom, data->status, data->phead);
- /*solve the linear equation system */
- if(les && les->type == N_NORMAL_LES) {
- if (strcmp(solver, G_MATH_SOLVER_ITERATIVE_CG) == 0)
- G_math_solver_cg(les->A, les->x, les->b, les->rows, maxit, error);
- if (strcmp(solver, G_MATH_SOLVER_ITERATIVE_PCG) == 0)
- G_math_solver_pcg(les->A, les->x, les->b, les->rows, maxit, error, G_MATH_DIAGONAL_PRECONDITION);
- if (strcmp(solver, G_MATH_SOLVER_DIRECT_CHOLESKY) == 0)
- G_math_solver_cholesky(les->A, les->x, les->b, les->rows, les->rows);
- }
- else if (les && les->type == N_SPARSE_LES) {
- if (strcmp(solver, G_MATH_SOLVER_ITERATIVE_CG) == 0)
- G_math_solver_sparse_cg(les->Asp, les->x, les->b, les->rows, maxit, error);
- if (strcmp(solver, G_MATH_SOLVER_ITERATIVE_PCG) == 0)
- G_math_solver_sparse_pcg(les->Asp, les->x, les->b, les->rows, maxit, error, G_MATH_DIAGONAL_PRECONDITION);
- }
- if (les == NULL)
- G_fatal_error(_("Unable to create and solve the linear equation system"));
- return les;
- }
|