123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574 |
- /****************************************************************************
- *
- * MODULE: r.regression.multi
- *
- * AUTHOR(S): Markus Metz
- *
- * PURPOSE: Calculates multiple linear regression from raster maps:
- * y = b0 + b1*x1 + b2*x2 + ... + bn*xn + e
- *
- * COPYRIGHT: (C) 2011 by the GRASS Development Team
- *
- * This program is free software under the GNU General Public
- * License (>=v2). Read the file COPYING that comes with GRASS
- * for details.
- *
- *****************************************************************************/
- #include <stdio.h>
- #include <stdlib.h>
- #include <math.h>
- #include <string.h>
- #include <grass/gis.h>
- #include <grass/glocale.h>
- #include <grass/raster.h>
- struct MATRIX
- {
- int n; /* SIZE OF THIS MATRIX (N x N) */
- double *v;
- };
- #define M(m,row,col) (m)->v[((row) * ((m)->n)) + (col)]
- static int solvemat(struct MATRIX *m, double a[], double B[])
- {
- int i, j, i2, j2, imark;
- double factor, temp;
- double pivot; /* ACTUAL VALUE OF THE LARGEST PIVOT CANDIDATE */
- for (i = 0; i < m->n; i++) {
- j = i;
- /* find row with largest magnitude value for pivot value */
- pivot = M(m, i, j);
- imark = i;
- for (i2 = i + 1; i2 < m->n; i2++) {
- temp = fabs(M(m, i2, j));
- if (temp > fabs(pivot)) {
- pivot = M(m, i2, j);
- imark = i2;
- }
- }
- /* if the pivot is very small then the points are nearly co-linear */
- /* co-linear points result in an undefined matrix, and nearly */
- /* co-linear points results in a solution with rounding error */
- if (pivot == 0.0) {
- G_warning(_("Matrix is unsolvable"));
- return 0;
- }
- /* if row with highest pivot is not the current row, switch them */
- if (imark != i) {
- for (j2 = 0; j2 < m->n; j2++) {
- temp = M(m, imark, j2);
- M(m, imark, j2) = M(m, i, j2);
- M(m, i, j2) = temp;
- }
- temp = a[imark];
- a[imark] = a[i];
- a[i] = temp;
- }
- /* compute zeros above and below the pivot, and compute
- values for the rest of the row as well */
- for (i2 = 0; i2 < m->n; i2++) {
- if (i2 != i) {
- factor = M(m, i2, j) / pivot;
- for (j2 = j; j2 < m->n; j2++)
- M(m, i2, j2) -= factor * M(m, i, j2);
- a[i2] -= factor * a[i];
- }
- }
- }
- /* SINCE ALL OTHER VALUES IN THE MATRIX ARE ZERO NOW, CALCULATE THE
- COEFFICIENTS BY DIVIDING THE COLUMN VECTORS BY THE DIAGONAL VALUES. */
- for (i = 0; i < m->n; i++) {
- B[i] = a[i] / M(m, i, i);
- }
- return 1;
- }
- int main(int argc, char *argv[])
- {
- unsigned int r, c, rows, cols, n_valid; /* totals */
- int *mapx_fd, mapy_fd, mapres_fd, mapest_fd;
- int i, j, k, n_predictors;
- double *sumX, sumY, *sumsqX, sumsqY, *sumXY;
- double *meanX, meanY, *varX, varY, *sdX, sdY;
- double yest, yres; /* estimated y, residual */
- double sumYest, *SSerr_without;
- double SE;
- double meanYest, meanYres, varYest, varYres, sdYest, sdYres;
- double SStot, SSerr, SSreg;
- double **a;
- struct MATRIX *m, *m_all;
- double **B, Rsq, Rsqadj, F, t, AIC, AICc, BIC;
- unsigned int count = 0;
- DCELL **mapx_buf, *mapy_buf, *mapx_val, mapy_val, *mapres_buf, *mapest_buf;
- char *name;
- struct Option *input_mapx, *input_mapy, *output_res, *output_est, *output_opt;
- struct Flag *shell_style;
- struct Cell_head region;
- struct GModule *module;
- G_gisinit(argv[0]);
- module = G_define_module();
- G_add_keyword(_("raster"));
- G_add_keyword(_("statistics"));
- G_add_keyword(_("regression"));
- module->description =
- _("Calculates multiple linear regression from raster maps.");
- /* Define the different options */
- input_mapx = G_define_standard_option(G_OPT_R_INPUTS);
- input_mapx->key = "mapx";
- input_mapx->description = (_("Map for x coefficient"));
- input_mapy = G_define_standard_option(G_OPT_R_INPUT);
- input_mapy->key = "mapy";
- input_mapy->description = (_("Map for y coefficient"));
- output_res = G_define_standard_option(G_OPT_R_OUTPUT);
- output_res->key = "residuals";
- output_res->required = NO;
- output_res->description = (_("Map to store residuals"));
- output_est = G_define_standard_option(G_OPT_R_OUTPUT);
- output_est->key = "estimates";
- output_est->required = NO;
- output_est->description = (_("Map to store estimates"));
- output_opt = G_define_standard_option(G_OPT_F_OUTPUT);
- output_opt->key = "output";
- output_opt->required = NO;
- output_opt->description =
- (_("ASCII file for storing regression coefficients (output to screen if file not specified)."));
- shell_style = G_define_flag();
- shell_style->key = 'g';
- shell_style->description = _("Print in shell script style");
- if (G_parser(argc, argv))
- exit(EXIT_FAILURE);
- name = output_opt->answer;
- if (name != NULL && strcmp(name, "-") != 0) {
- if (NULL == freopen(name, "w", stdout)) {
- G_fatal_error(_("Unable to open file <%s> for writing"), name);
- }
- }
- G_get_window(®ion);
- rows = region.rows;
- cols = region.cols;
- /* count x maps */
- for (i = 0; input_mapx->answers[i]; i++);
- n_predictors = i;
-
- /* allocate memory for x maps */
- mapx_fd = (int *)G_malloc(n_predictors * sizeof(int));
- sumX = (double *)G_malloc(n_predictors * sizeof(double));
- sumsqX = (double *)G_malloc(n_predictors * sizeof(double));
- sumXY = (double *)G_malloc(n_predictors * sizeof(double));
- SSerr_without = (double *)G_malloc(n_predictors * sizeof(double));
- meanX = (double *)G_malloc(n_predictors * sizeof(double));
- varX = (double *)G_malloc(n_predictors * sizeof(double));
- sdX = (double *)G_malloc(n_predictors * sizeof(double));
- mapx_buf = (DCELL **)G_malloc(n_predictors * sizeof(DCELL *));
- mapx_val = (DCELL *)G_malloc((n_predictors + 1) * sizeof(DCELL));
-
- /* ordinary least squares */
- m = NULL;
- m_all = (struct MATRIX *)G_malloc((n_predictors + 1) * sizeof(struct MATRIX));
- a = (double **)G_malloc((n_predictors + 1) * sizeof(double *));
- B = (double **)G_malloc((n_predictors + 1) * sizeof(double *));
- m = &(m_all[0]);
- m->n = n_predictors + 1;
- m->v = (double *)G_malloc(m->n * m->n * sizeof(double));
- a[0] = (double *)G_malloc(m->n * sizeof(double));
- B[0] = (double *)G_malloc(m->n * sizeof(double));
- for (i = 0; i < m->n; i++) {
- for (j = i; j < m->n; j++)
- M(m, i, j) = 0.0;
- a[0][i] = 0.0;
- B[0][i] = 0.0;
- }
-
- for (k = 1; k <= n_predictors; k++) {
- m = &(m_all[k]);
- m->n = n_predictors;
- m->v = (double *)G_malloc(m->n * m->n * sizeof(double));
- a[k] = (double *)G_malloc(m->n * sizeof(double));
- B[k] = (double *)G_malloc(m->n * sizeof(double));
- for (i = 0; i < m->n; i++) {
- for (j = i; j < m->n; j++)
- M(m, i, j) = 0.0;
- a[k][i] = 0.0;
- B[k][i] = 0.0;
- }
- }
- /* open maps */
- G_debug(1, "open maps");
- for (i = 0; i < n_predictors; i++) {
- mapx_fd[i] = Rast_open_old(input_mapx->answers[i], "");
- }
- mapy_fd = Rast_open_old(input_mapy->answer, "");
- for (i = 0; i < n_predictors; i++)
- mapx_buf[i] = Rast_allocate_d_buf();
- mapy_buf = Rast_allocate_d_buf();
- for (i = 0; i < n_predictors; i++) {
- sumX[i] = sumsqX[i] = sumXY[i] = 0.0;
- meanX[i] = varX[i] = sdX[i] = 0.0;
- SSerr_without[i] = 0.0;
- }
- sumY = sumsqY = meanY = varY = sdY = 0.0;
- sumYest = meanYest = varYest = sdYest = 0.0;
- meanYres = varYres = sdYres = 0.0;
- /* read input maps */
- G_message(_("First pass..."));
- n_valid = 0;
- mapx_val[0] = 1.0;
- for (r = 0; r < rows; r++) {
- G_percent(r, rows, 2);
- for (i = 0; i < n_predictors; i++)
- Rast_get_d_row(mapx_fd[i], mapx_buf[i], r);
- Rast_get_d_row(mapy_fd, mapy_buf, r);
- for (c = 0; c < cols; c++) {
- int isnull = 0;
- for (i = 0; i < n_predictors; i++) {
- mapx_val[i + 1] = mapx_buf[i][c];
- if (Rast_is_d_null_value(&(mapx_val[i + 1]))) {
- isnull = 1;
- break;
- }
- }
- if (isnull)
- continue;
- mapy_val = mapy_buf[c];
- if (Rast_is_d_null_value(&mapy_val))
- continue;
- for (i = 0; i <= n_predictors; i++) {
- double val1 = mapx_val[i];
- for (j = i; j <= n_predictors; j++) {
- double val2 = mapx_val[j];
- m = &(m_all[0]);
- M(m, i, j) += val1 * val2;
- /* linear model without predictor k */
- for (k = 1; k <= n_predictors; k++) {
- if (k != i && k != j) {
- int i2 = k > i ? i : i - 1;
- int j2 = k > j ? j : j - 1;
- m = &(m_all[k]);
- M(m, i2, j2) += val1 * val2;
- }
- }
- }
- a[0][i] += mapy_val * val1;
- for (k = 1; k <= n_predictors; k++) {
- if (k != i) {
- int i2 = k > i ? i : i - 1;
- a[k][i2] += mapy_val * val1;
- }
- }
- if (i > 0) {
- sumX[i - 1] += val1;
- sumsqX[i - 1] += val1 * val1;
- sumXY[i - 1] += val1 * mapy_val;
- }
- }
- sumY += mapy_val;
- sumsqY += mapy_val * mapy_val;
- count++;
- }
- }
- G_percent(rows, rows, 2);
-
- if (count < n_predictors + 1)
- G_fatal_error(_("Not enough valid cells available"));
- for (k = 0; k <= n_predictors; k++) {
- m = &(m_all[k]);
- /* TRANSPOSE VALUES IN UPPER HALF OF M TO OTHER HALF */
- for (i = 1; i < m->n; i++)
- for (j = 0; j < i; j++)
- M(m, i, j) = M(m, j, i);
- if (!solvemat(m, a[k], B[k])) {
- for (i = 0; i <= n_predictors; i++) {
- fprintf(stdout, "b%d=0.0\n", i);
- }
- G_fatal_error(_("Multiple regression failed"));
- }
- }
-
- /* second pass */
- G_message(_("Second pass..."));
- /* residuals output */
- if (output_res->answer) {
- mapres_fd = Rast_open_new(output_res->answer, DCELL_TYPE);
- mapres_buf = Rast_allocate_d_buf();
- }
- else {
- mapres_fd = -1;
- mapres_buf = NULL;
- }
- /* estimates output */
- if (output_est->answer) {
- mapest_fd = Rast_open_new(output_est->answer, DCELL_TYPE);
- mapest_buf = Rast_allocate_d_buf();
- }
- else {
- mapest_fd = -1;
- mapest_buf = NULL;
- }
- for (i = 0; i < n_predictors; i++)
- meanX[i] = sumX[i] / count;
- meanY = sumY / count;
- SStot = SSerr = SSreg = 0.0;
- for (r = 0; r < rows; r++) {
- G_percent(r, rows, 2);
- for (i = 0; i < n_predictors; i++)
- Rast_get_d_row(mapx_fd[i], mapx_buf[i], r);
- Rast_get_d_row(mapy_fd, mapy_buf, r);
-
- if (mapres_buf)
- Rast_set_d_null_value(mapres_buf, cols);
- if (mapest_buf)
- Rast_set_d_null_value(mapest_buf, cols);
- for (c = 0; c < cols; c++) {
- int isnull = 0;
- for (i = 0; i < n_predictors; i++) {
- mapx_val[i + 1] = mapx_buf[i][c];
- if (Rast_is_d_null_value(&(mapx_val[i + 1]))) {
- isnull = 1;
- break;
- }
- }
- if (isnull)
- continue;
- yest = 0.0;
- for (i = 0; i <= n_predictors; i++) {
- yest += B[0][i] * mapx_val[i];
- }
- if (mapest_buf)
- mapest_buf[c] = yest;
- mapy_val = mapy_buf[c];
- if (Rast_is_d_null_value(&mapy_val))
- continue;
- yres = mapy_val - yest;
- if (mapres_buf)
- mapres_buf[c] = yres;
- SStot += (mapy_val - meanY) * (mapy_val - meanY);
- SSreg += (yest - meanY) * (yest - meanY);
- SSerr += yres * yres;
- for (k = 1; k <= n_predictors; k++) {
- double yesti = 0.0;
- double yresi;
- /* linear model without predictor k */
- for (i = 0; i <= n_predictors; i++) {
- if (i != k) {
- j = k > i ? i : i - 1;
- yesti += B[k][j] * mapx_val[i];
- }
- }
- yresi = mapy_val - yesti;
- /* linear model without predictor k */
- SSerr_without[k - 1] += yresi * yresi;
- varX[k - 1] = (mapx_val[k] - meanX[k - 1]) * (mapx_val[k] - meanX[k - 1]);
- }
- }
- if (mapres_buf)
- Rast_put_d_row(mapres_fd, mapres_buf);
- if (mapest_buf)
- Rast_put_d_row(mapest_fd, mapest_buf);
- }
- G_percent(rows, rows, 2);
- fprintf(stdout, "n=%d\n", count);
- /* coefficient of determination aka R squared */
- Rsq = 1 - (SSerr / SStot);
- fprintf(stdout, "Rsq=%f\n", Rsq);
- /* adjusted coefficient of determination */
- Rsqadj = 1 - ((SSerr * (count - 1)) / (SStot * (count - n_predictors - 1)));
- fprintf(stdout, "Rsqadj=%f\n", Rsqadj);
- /* F statistic */
- /* F = ((SStot - SSerr) / (n_predictors)) / (SSerr / (count - n_predictors));
- * , or: */
- F = ((SStot - SSerr) * (count - n_predictors - 1)) / (SSerr * (n_predictors));
- fprintf(stdout, "F=%f\n", F);
- i = 0;
- /* constant aka estimate for intercept in R */
- fprintf(stdout, "b%d=%f\n", i, B[0][i]);
- /* t score for R squared of the full model, unused */
- t = sqrt(Rsq) * sqrt((count - 2) / (1 - Rsq));
- /*
- fprintf(stdout, "t%d=%f\n", i, t);
- */
- /* AIC, corrected AIC, and BIC information criteria for the full model */
- AIC = count * log(SSerr / count) + 2 * (n_predictors + 1);
- fprintf(stdout, "AIC=%f\n", AIC);
- AICc = AIC + (2 * n_predictors * (n_predictors + 1)) / (count - n_predictors - 1);
- fprintf(stdout, "AICc=%f\n", AICc);
- BIC = count * log(SSerr / count) + log(count) * (n_predictors + 1);
- fprintf(stdout, "BIC=%f\n", BIC);
- /* error variance of the model, identical to R */
- SE = SSerr / (count - n_predictors - 1);
- /*
- fprintf(stdout, "SE=%f\n", SE);
- fprintf(stdout, "SSerr=%f\n", SSerr);
- */
- for (i = 0; i < n_predictors; i++) {
- fprintf(stdout, "\npredictor%d=%s\n", i + 1, input_mapx->answers[i]);
- fprintf(stdout, "b%d=%f\n", i + 1, B[0][i + 1]);
- if (n_predictors > 1) {
- double Rsqi, SEi, sumsqX_corr;
- /* corrected sum of squares for predictor [i] */
- sumsqX_corr = sumsqX[i] - sumX[i] * sumX[i] / (count - n_predictors - 1);
- /* standard error SE for predictor [i] */
- /* SE[i] with only one predictor: sqrt(SE / sumsqX_corr)
- * this does not work with more than one predictor */
- /* in R, SEi is sqrt(diag(R) * resvar) with
- * R = ???
- * resvar = rss / rdf = SE global
- * rss = sum of squares of the residuals
- * rdf = residual degrees of freedom = count - n_predictors - 1 */
- SEi = sqrt(SE / (Rsq * sumsqX_corr));
- /*
- fprintf(stdout, "SE%d=%f\n", i + 1, SEi);
- */
- /* Sum of squares for predictor [i] */
- /*
- fprintf(stdout, "SSerr%d=%f\n", i + 1, SSerr_without[i] - SSerr);
- */
- /* R squared of the model without predictor [i] */
- /* Rsqi = 1 - SSerr_without[i] / SStot; */
- /* the additional amount of variance explained
- * when including predictor [i] :
- * Rsq - Rsqi */
- Rsqi = (SSerr_without[i] - SSerr) / SStot;
- fprintf(stdout, "Rsq%d=%f\n", i + 1, Rsqi);
- /* t score for Student's t distribution, unused */
- t = (B[0][i + 1]) / SEi;
- /*
- fprintf(stdout, "t%d=%f\n", i + 1, t);
- */
- /* F score for Fisher's F distribution
- * here: F score to test if including predictor [i]
- * yields a significant improvement
- * after Lothar Sachs, Angewandte Statistik:
- * F = (Rsq - Rsqi) * (count - n_predictors - 1) / (1 - Rsq) */
- /* same like Sumsq / SE */
- /* same like (SSerr_without[i] / SSerr - 1) * (count - n_predictors - 1) */
- /* same like R-stats when entered in R-stats as last predictor */
- F = (SSerr_without[i] / SSerr - 1) * (count - n_predictors - 1);
- fprintf(stdout, "F%d=%f\n", i + 1, F);
- /* AIC, corrected AIC, and BIC information criteria for
- * the model without predictor [i] */
- AIC = count * log(SSerr_without[i] / count) + 2 * (n_predictors);
- fprintf(stdout, "AIC%d=%f\n", i + 1, AIC);
- AICc = AIC + (2 * (n_predictors - 1) * n_predictors) / (count - n_predictors - 2);
- fprintf(stdout, "AICc%d=%f\n", i + 1, AICc);
- BIC = count * log(SSerr_without[i] / count) + (n_predictors - 1) * log(count);
- fprintf(stdout, "BIC%d=%f\n", i + 1, BIC);
- }
- }
-
- for (i = 0; i < n_predictors; i++) {
- Rast_close(mapx_fd[i]);
- G_free(mapx_buf[i]);
- }
- Rast_close(mapy_fd);
- G_free(mapy_buf);
-
- if (mapres_fd > -1) {
- struct History history;
- Rast_close(mapres_fd);
- G_free(mapres_buf);
- Rast_short_history(output_res->answer, "raster", &history);
- Rast_command_history(&history);
- Rast_write_history(output_res->answer, &history);
- }
- if (mapest_fd > -1) {
- struct History history;
- Rast_close(mapest_fd);
- G_free(mapest_buf);
- Rast_short_history(output_est->answer, "raster", &history);
- Rast_command_history(&history);
- Rast_write_history(output_est->answer, &history);
- }
- exit(EXIT_SUCCESS);
- }
|