r.ros.html 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. <h2>DESCRIPTION</h2>
  2. <em>r.ros</em> is part of the wildfire simulation toolset. Preparational
  3. steps for the fire simulation are the calculation of the rate of spread (ROS)
  4. with <em>r.ros</em>, and the creating of spread map with <em>r.spread</em>.
  5. Eventually, the fire path(s) based on starting point(s) are calculated
  6. with <em>r.spreadpath</em>.
  7. <p>
  8. <em>r.ros</em> is used for fire (wildfire) modeling. The input is fuel model
  9. and moisture and the outputs are rate of spread (ROS) values.
  10. The module generates the base ROS value, maximum ROS value,
  11. direction of the maximum ROS, and optionally the maximum potential spotting distance
  12. of wildfire for each raster cell in the current geographic region.
  13. These three or four raster map layers
  14. serve as inputs for the <em><a href="r.spread.html">r.spread</a></em> module
  15. which is the next step in fire simulation.
  16. <p>
  17. The <em>r.ros</em> module and two related modules
  18. <em><a href="r.spread.html">r.spread</a></em>,
  19. and <em><a href="r.spreadpath.html">r.spreadpath</a></em> can be used
  20. not only for wildfire modeling but also generally
  21. to simulate other events where spread of something is involved and
  22. elliptical spread is appropriate.
  23. <p>
  24. The calculation of the two ROS values for each raster cell is based on the
  25. Fortran code by Pat Andrews (1983) of the Northern Forest Fire Laboratory,
  26. USDA Forest Service. The direction of the maximum ROS results from the
  27. vector addition of the forward ROS in wind direction and that in upslope
  28. direction. The spotting distance, if required, will be calculated by a
  29. separate function, spot_dist(), which is based on Lathrop and Xu (in preparation),
  30. Chase (1984) and Rothermel (1991). More information
  31. on <em>r.ros</em> and <em><a href="r.spread.html">r.spread</a></em> can be found in Xu (1994).
  32. <p>
  33. The <b>output</b> parameter is a basename (prefix) for all generated
  34. raster maps and each map gets a unique suffix:
  35. <ul>
  36. <li><tt>.base</tt> for the base (perpendicular) ROS (cm/minute)
  37. <li><tt>.max</tt> for the maximum (forward) ROS (cm/minute),
  38. <li><tt>.maxdir</tt> for the direction of the maximum
  39. ROS, clockwise from north (degree), and optionally
  40. <li><tt>.spotdist</tt> for the maximum potential
  41. spotting distance (meters).
  42. </ul>
  43. <p>
  44. So, if the output parameter is <tt>blackforest_ros</tt>, <em>r.ros</em> creates
  45. <tt>blackforest_ros.base</tt>, <tt>blackforest_ros.max</tt>,
  46. <tt>blackforest_ros.maxdir</tt>,
  47. and (optionally) <tt>blackforest_ros.spotdist</tt> raster maps.
  48. <p>If only one or two of the options <b>moisture_1h</b>, <b>moisture_10h</b>,
  49. and <b>moisture_100h</b> are given, the module will assign
  50. values to the missing option using the formula:
  51. <div class="code"><pre>
  52. moisture_100h = moisture_10h + 1 = moisture_1h + 2
  53. </pre></div>
  54. However, at least one of them should be given.
  55. <p>
  56. Options <b>velocity</b>
  57. and <b>direction</b> must be both given or both omitted.
  58. If none is given, the module will assume a no-wind
  59. condition.
  60. <p>
  61. Options <b>slope</b> and <b>aspect</b> must be also given together.
  62. If none is given, the module will assume a
  63. topographically flat condition. Option
  64. <b>elevation</b> must be given if <b>-s</b> (spotting) flag is used.
  65. <h2>EXAMPLES</h2>
  66. Assume we have inputs, the following generates ROSes and spotting distances:
  67. <div class="code"><pre>
  68. r.ros -s model=fire_model moisture_1h=1hour_moisture moisture_live=live_moisture \
  69. velocity=wind_speed direction=wind_direction \
  70. slope=slope aspect=aspect elevation=elevation output=ros
  71. </pre></div>
  72. <h2>NOTES</h2>
  73. <ol>
  74. <li><em>r.ros</em> is supposed to be run before running
  75. <em><a href="r.spread.html">r.spread</a></em> module.
  76. The combination of these two modules forms
  77. a simulation of the spread of wildfires.
  78. <li>The user should be sure that the inputs to
  79. <em>r.ros</em> are in proper units.
  80. <li>The output units for the base and maximum ROSes are in cm/minute
  81. rather than ft/minute, which is due to that a possible zero ft/minute base
  82. ROS value and a positive integer ft/minute maximum ROS would result in
  83. calculation failure in the
  84. <em><a href="r.spread.html">r.spread</a></em> module.
  85. <!-- This is caused by usage of CELL instead of FCELL/DCELL. ? -->
  86. As far as the user just use <em>r.ros</em> together with
  87. <em><a href="r.spread.html">r.spread</a></em>, there is no need to
  88. concern about these output units.
  89. </ol>
  90. <h2>REFERENCES</h2>
  91. <ul>
  92. <li><b>Albini,</b> F. A., 1976, Computer-based models of wildland fire behavior:
  93. a user's manual, USDA Forest Service, Intermountain Forest and Range Experiment
  94. Station, Ogden, Utah.</li>
  95. <li><b>Andrews</b>, P. L., 1986, BEHAVE: fire behavior prediction and fuel
  96. modeling system -- BURN subsystem, Part 1, USDA Forest Service, Intermountain
  97. Research Station, Gen. Tech. Rep. INT-194, Ogden, Utah.</li>
  98. <li><b>Chase</b>, Carolyn, H., 1984, Spotting distance from wind-driven
  99. surface fires -- extensions of equations for pocket calculators, US Forest
  100. Service, Res. Note INT-346, Ogden, Utah.</li>
  101. <li><b>Lathrop</b>, Richard G. and Jianping Xu, A geographic information
  102. system-based approach for calculating spotting distance. (in preparation)</li>
  103. <li><b>Rothermel</b>, R. E., 1972, A mathematical model for predicting
  104. fire spread in wildland fuels, USDA Forest Service, Intermountain Forest
  105. and Range Experiment Station, Res. Pap. INT-115, Ogden, Utah.</li>
  106. <li><b>Rothermel</b>, Richard, 1991, Predicting behavior and size of crown
  107. fires in the northern Rocky Mountains, US Forest Service, Res. Paper INT-438,
  108. Ogden, Utah.</li>
  109. <li><b>Xu</b>, Jianping, 1994, Simulating the spread of wildfires using
  110. a geographic information system and remote sensing, Ph. D. Dissertation,
  111. Rutgers University, New Brunswick, Jersey
  112. (<a href="https://dl.acm.org/citation.cfm?id=921466">ref</a>).</li>
  113. </ul>
  114. <h2>SEE ALSO</h2>
  115. <em>
  116. <a href="g.region.html">g.region</a>,
  117. <a href="r.slope.aspect.html">r.slope.aspect</a>,
  118. <a href="r.spread.html">r.spread</a>,
  119. <a href="r.spreadpath.html">r.spreadpath</a>
  120. </em>
  121. Sample data download: <a href="http://grass.osgeo.org/download/sample-data/">firedemo.sh</a>
  122. (run this script within the "Fire simulation data set" location.
  123. <h2> AUTHOR</h2>
  124. Jianping Xu, Center for Remote Sensing and Spatial Analysis, Rutgers University.
  125. <p><em>Last changed: $Date$</em>