123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- /***** BallAux.c *****/
- #include <math.h>
- #include "BallAux.h"
- Quat qOne = { 0, 0, 0, 1 };
- /* Return quaternion product qL * qR. Note: order is important!
- * To combine rotations, use the product Mul(qSecond, qFirst),
- * which gives the effect of rotating by qFirst then qSecond. */
- Quat Qt_Mul(Quat qL, Quat qR)
- {
- Quat qq;
- qq.w = qL.w * qR.w - qL.x * qR.x - qL.y * qR.y - qL.z * qR.z;
- qq.x = qL.w * qR.x + qL.x * qR.w + qL.y * qR.z - qL.z * qR.y;
- qq.y = qL.w * qR.y + qL.y * qR.w + qL.z * qR.x - qL.x * qR.z;
- qq.z = qL.w * qR.z + qL.z * qR.w + qL.x * qR.y - qL.y * qR.x;
- return (qq);
- }
- /* Construct rotation matrix from (possibly non-unit) quaternion.
- * Assumes matrix is used to multiply column vector on the left:
- * vnew = mat vold. Works correctly for right-handed coordinate system
- * and right-handed rotations. */
- HMatrix *Qt_ToMatrix(Quat q, HMatrix out)
- {
- double Nq = q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w;
- double s = (Nq > 0.0) ? (2.0 / Nq) : 0.0;
- double xs = q.x * s, ys = q.y * s, zs = q.z * s;
- double wx = q.w * xs, wy = q.w * ys, wz = q.w * zs;
- double xx = q.x * xs, xy = q.x * ys, xz = q.x * zs;
- double yy = q.y * ys, yz = q.y * zs, zz = q.z * zs;
- out[XX][XX] = 1.0 - (yy + zz);
- out[YY][XX] = xy + wz;
- out[ZZ][XX] = xz - wy;
- out[XX][YY] = xy - wz;
- out[YY][YY] = 1.0 - (xx + zz);
- out[ZZ][YY] = yz + wx;
- out[XX][ZZ] = xz + wy;
- out[YY][ZZ] = yz - wx;
- out[ZZ][ZZ] = 1.0 - (xx + yy);
- out[XX][WW] = out[YY][WW] = out[ZZ][WW] = out[WW][XX] = out[WW][YY] =
- out[WW][ZZ] = 0.0;
- out[WW][WW] = 1.0;
- return ((HMatrix *) & out);
- }
- Quat Matrix_to_Qt(HMatrix dircos)
- {
- Quat quat;
- float dummy;
- quat.w = .5 * sqrt(1. + dircos[0][0] + dircos[1][1] + dircos[2][2]);
- dummy = 4. * quat.w;
- quat.x = (dircos[2][1] - dircos[1][2]) / dummy;
- quat.y = (dircos[0][2] - dircos[2][0]) / dummy;
- quat.z = (dircos[1][0] - dircos[0][1]) / dummy;
- return (quat);
- }
- /* Return conjugate of quaternion. */
- Quat Qt_Conj(Quat q)
- {
- Quat qq;
- qq.x = -q.x;
- qq.y = -q.y;
- qq.z = -q.z;
- qq.w = q.w;
- return (qq);
- }
- /* Return vector formed from components */
- HVect V3_(float x, float y, float z)
- {
- HVect v;
- v.x = x;
- v.y = y;
- v.z = z;
- v.w = 0;
- return (v);
- }
- /* Return norm of v, defined as sum of squares of components */
- float V3_Norm(HVect v)
- {
- return (v.x * v.x + v.y * v.y + v.z * v.z);
- }
- /* Return unit magnitude vector in direction of v */
- HVect V3_Unit(HVect v)
- {
- HVect u = { 0, 0, 0, 0 };
- float vlen = sqrt(V3_Norm(v));
- if (vlen != 0.0) {
- u.x = v.x / vlen;
- u.y = v.y / vlen;
- u.z = v.z / vlen;
- }
- return (u);
- }
- /* Return version of v scaled by s */
- HVect V3_Scale(HVect v, float s)
- {
- HVect u;
- u.x = s * v.x;
- u.y = s * v.y;
- u.z = s * v.z;
- u.w = v.w;
- return (u);
- }
- /* Return negative of v */
- HVect V3_Negate(HVect v)
- {
- HVect u = { 0, 0, 0, 0 };
- u.x = -v.x;
- u.y = -v.y;
- u.z = -v.z;
- return (u);
- }
- /* Return sum of v1 and v2 */
- HVect V3_Add(HVect v1, HVect v2)
- {
- HVect v = { 0, 0, 0, 0 };
- v.x = v1.x + v2.x;
- v.y = v1.y + v2.y;
- v.z = v1.z + v2.z;
- return (v);
- }
- /* Return difference of v1 minus v2 */
- HVect V3_Sub(HVect v1, HVect v2)
- {
- HVect v = { 0, 0, 0, 0 };
- v.x = v1.x - v2.x;
- v.y = v1.y - v2.y;
- v.z = v1.z - v2.z;
- return (v);
- }
- /* Halve arc between unit vectors v0 and v1. */
- HVect V3_Bisect(HVect v0, HVect v1)
- {
- HVect v = { 0, 0, 0, 0 };
- float Nv;
- v = V3_Add(v0, v1);
- Nv = V3_Norm(v);
- if (Nv < 1.0e-5) {
- v = V3_(0, 0, 1);
- }
- else {
- v = V3_Scale(v, 1 / sqrt(Nv));
- }
- return (v);
- }
- /* Return dot product of v1 and v2 */
- float V3_Dot(HVect v1, HVect v2)
- {
- return (v1.x * v2.x + v1.y * v2.y + v1.z * v2.z);
- }
- /* Return cross product, v1 x v2 */
- HVect V3_Cross(HVect v1, HVect v2)
- {
- HVect v = { 0, 0, 0, 0 };
- v.x = v1.y * v2.z - v1.z * v2.y;
- v.y = v1.z * v2.x - v1.x * v2.z;
- v.z = v1.x * v2.y - v1.y * v2.x;
- return (v);
- }
|