imageryintro.html 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160
  1. <!-- meta page description: Image processing in GRASS GIS -->
  2. <!-- meta page index: imagery -->
  3. <h3>Image data in general</h3>
  4. In GRASS, image data are identical to <a href="rasterintro.html">raster data</a>.
  5. However, a couple of commands are explicitly dedicated to image
  6. processing. The geographic boundaries of the raster/imagery file are
  7. described by the north, south, east, and west fields. These values
  8. describe the lines which bound the map at its edges. These lines do
  9. NOT pass through the center of the grid cells at the edge of the map,
  10. but along the edge of the map itself.
  11. <p>
  12. As a general rule in GRASS:
  13. <ol>
  14. <li> Raster/imagery output maps have their bounds and resolution equal
  15. to those of the current region.
  16. <li> Raster/imagery input maps are automatically cropped/padded and
  17. rescaled (using nearest-neighbor resampling) to match the current
  18. region.
  19. </ol>
  20. <h3>Raster import</h3>
  21. The module <a href="r.in.gdal.html">r.in.gdal</a> offers a common
  22. interface for many different raster and satellite image
  23. formats. Additionally, it also offers options such as on-the-fly
  24. location creation or extension of the default region to match the
  25. extent of the imported raster map. For special cases, other import
  26. modules are available. Always the full map is imported. Imagery data
  27. can be group (e.g. channel-wise) with <a href="i.group.html">i.group</a>.
  28. <p>
  29. For importing scanned maps, the user will need to create a
  30. x,y-location, scan the map in the desired resolution and save it into
  31. an appropriate raster format (e.g. tiff, jpeg, png, pbm) and then use
  32. <a href="r.in.gdal.html">r.in.gdal</a> to import it. Based on
  33. reference points the scanned map can be rectified to obtain geocoded
  34. data.
  35. <h3>Image processing operations</h3>
  36. GRASS raster/imagery map processing is always performed in the current
  37. region settings (see <a href="g.region.html">g.region</a>), i.e. the
  38. current region extent and current raster resolution is used. If the
  39. resolution differs from that of the input raster map(s), on-the-fly
  40. resampling is performed (nearest neighbor resampling). If this is not
  41. desired, the input map(s) has/have to be resampled beforehand with one
  42. of the dedicated modules.
  43. <h3>Geocoding of imagery data</h3>
  44. GRASS is able to geocode raster and image data of various types:
  45. <ul>
  46. <li>unreferenced scanned maps by defining four corner points
  47. (<a href="i.group.html">i.group</a>, <a href="i.target.html">i.target</a>,
  48. <a href="i.points.html">i.points</a>, <a href="i.rectify.html">i.rectify</a>)</li>
  49. <li>unreferenced satellite data from optical and Radar sensors by
  50. defining a certain number of ground control points
  51. (<a href="i.group.html">i.group</a>, <a href="i.target.html">i.target</a>,
  52. <a href="i.points.html">i.points</a>, <a href="i.rectify.html">i.rectify</a>)</li>
  53. <!--
  54. <li>orthophoto based on DEM: <a href="i.ortho.photo.html">i.ortho.photo</a></li>
  55. <li>digital handheld camera geocoding: modified procedure for
  56. <a href="i.ortho.photo.html">i.ortho.photo</a></li>
  57. -->
  58. </ul>
  59. <h3>Visualizing (true) color composites</h3>
  60. To quickly combine the first three channels to a near natural color
  61. image, the GRASS command <a href="d.rgb.html">d.rgb</a> can be used or
  62. the graphical GIS manager (<a href="wxGUI.html">wxGUI</a>). It assigns
  63. each channel to a color which is then mixed while displayed. With a
  64. bit more work of tuning the grey scales of the channels, nearly
  65. perfect colors can be achieved. Channel histograms can be shown with
  66. <a href="d.histogram.html">d.histogram</a>.
  67. <h3>Calculation of vegetation indices</h3>
  68. An example for indices derived from multispectral data is the NDVI
  69. (normalized difference vegetation index). To study the vegetation
  70. status with NDVI, the Red and the Near Infrared channels (NIR) are
  71. taken as used as input for simple map algebra in the GRASS command
  72. <a href="r.mapcalc.html">r.mapcalc</a>
  73. (<tt>ndvi = 1.0 * (nir - red)/(nir + red)</tt>). With
  74. <a href="r.colors.html">r.colors</a> an optimized "ndvi" color table
  75. can be assigned afterward. Also other vegetation indices can be
  76. generated likewise.
  77. <h3>Calibration of thermal channel</h3>
  78. The encoded digital numbers of a thermal infrared channel can be
  79. transformed to degree Celsius (or other temperature units) which
  80. represent the temperature of the observed land surface. This requires
  81. a few algebraic steps with <a href="r.mapcalc.html">r.mapcalc</a>
  82. which are outlined in the literature to apply gain and bias values
  83. from the image metadata.
  84. <h3>Image classification</h3>
  85. Single and multispectral data can be classified to user defined land
  86. use/land cover classes. In case of a single channel, segmentation will
  87. be used.
  88. GRASS supports the following methods:
  89. <ul>
  90. <li> Radiometric classification:
  91. <ul>
  92. <li> Unsupervised classification (<a href="i.cluster.html">i.cluster</A>,
  93. <a href="i.maxlik.html">i.maxlik</A>) using the Maximum Likelihood
  94. classification method</li>
  95. <li> Supervised classification (<a href="i.gensig.html">i.gensig</A>
  96. or <a href="i.class.html">i.class</A>, <a href="i.maxlik.html">i.maxlik</A>)
  97. using the Maximum Likelihood classification method</li>
  98. </ul>
  99. <li> Combined radiometric/geometric (segmentation based) supervised
  100. classification (<a href="i.gensigset.html">i.gensigset</A>,
  101. <a href="i.smap.html">i.smap</a>)
  102. </ul>
  103. Kappa statistic can be calculated to validate the results
  104. (<a href="r.kappa.html">r.kappa</a>).
  105. <h3>Image fusion</h3>
  106. In case of using multispectral data, improvements of the resolution
  107. can be gained by merging the panchromatic channel with color
  108. channels. GRASS provides the HIS (<a href="i.rgb.his.html">i.rgb.his</a>,
  109. <a href="i.his.rgb.html">i.his.rgb</a>) and the Brovey and PCA transform
  110. (<a href="i.pansharpen.html">i.pansharpen</a>) methods.
  111. <h3>Time series processing</h3>
  112. GRASS also offers support for time series processing (<a
  113. href="r.series.html">r.series</a>). Statistics can be derived from a
  114. set of coregistered input maps such as multitemporal satellite
  115. data. The common univariate statistics and also linear regression can
  116. be calculated.
  117. <h3>See also</h3>
  118. <ul>
  119. <li> GRASS GIS Wiki page: <a href="http://grasswiki.osgeo.org/wiki/Image_processing">Image processing</a></li>
  120. <li>The GRASS 4
  121. <em><a href="http://grass.osgeo.org/gdp/imagery/grass4_image_processing.pdf">Image
  122. Processing manual</A></em></li>
  123. <li><a href="rasterintro.html">Introduction into raster data processing</a></li>
  124. <li><a href="raster3dintro.html">Introduction into 3D raster data (voxel) processing</a></li>
  125. <li><a href="vectorintro.html">Introduction into vector data processing</a></li>
  126. <li><a href="databaseintro.html">Database management</a></li>
  127. <li><a href="projectionintro.html">Projections and spatial transformations</a></li>
  128. </ul>