main.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525
  1. /****************************************************************************
  2. *
  3. * MODULE: r.statistics2
  4. *
  5. * AUTHOR(S): Glynn Clements; loosely based upon r.statistics, by
  6. * Martin Schroeder, Geographisches Institut Heidelberg, Germany
  7. *
  8. * PURPOSE: Category or object oriented statistics
  9. *
  10. * COPYRIGHT: (C) 2007,2008 Martin Schroeder, Glynn Clements
  11. * and the GRASS Development Team
  12. *
  13. * This program is free software under the GNU General Public
  14. * License (>=v2). Read the file COPYING that comes with GRASS
  15. * for details.
  16. *
  17. *****************************************************************************/
  18. #include <string.h>
  19. #include <stdlib.h>
  20. #include <math.h>
  21. #include <grass/gis.h>
  22. #include <grass/raster.h>
  23. #include <grass/spawn.h>
  24. #include <grass/glocale.h>
  25. #define COUNT 1 /* Count */
  26. #define SUM 2 /* Sum */
  27. #define MIN 3 /* Minimum */
  28. #define MAX 4 /* Maximum */
  29. #define RANGE 5 /* Range */
  30. #define AVERAGE 6 /* Average (mean) */
  31. #define ADEV 7 /* Average deviation */
  32. #define VARIANCE1 8 /* Variance */
  33. #define STDDEV1 9 /* Standard deviation */
  34. #define SKEWNESS1 10 /* Skewnes */
  35. #define KURTOSIS1 11 /* Kurtosis */
  36. #define VARIANCE2 12 /* Variance */
  37. #define STDDEV2 13 /* Standard deviation */
  38. #define SKEWNESS2 14 /* Skewnes */
  39. #define KURTOSIS2 15 /* Kurtosis */
  40. struct menu
  41. {
  42. const char *name; /* method name */
  43. int val; /* number of function */
  44. const char *text; /* menu display - full description */
  45. };
  46. extern struct menu menu[];
  47. /* modify this table to add new methods */
  48. struct menu menu[] = {
  49. {"count", COUNT, "Count of values in specified objects"},
  50. {"sum", SUM, "Sum of values in specified objects"},
  51. {"min", MIN, "Minimum of values in specified objects"},
  52. {"max", MAX, "Maximum of values in specified objects"},
  53. {"range", RANGE, "Range of values (max - min) in specified objects"},
  54. {"average", AVERAGE, "Average of values in specified objects"},
  55. {"avedev", ADEV, "Average deviation of values in specified objects"},
  56. {"variance", VARIANCE1, "Variance of values in specified objects"},
  57. {"stddev", STDDEV1, "Standard deviation of values in specified objects"},
  58. {"skewness", SKEWNESS1, "Skewness of values in specified objects"},
  59. {"kurtosis", KURTOSIS1, "Kurtosis of values in specified objects"},
  60. {"variance2", VARIANCE2, "(2-pass) Variance of values in specified objects"},
  61. {"stddev2", STDDEV2, "(2-pass) Standard deviation of values in specified objects"},
  62. {"skewness2", SKEWNESS2, "(2-pass) Skewnes of values in specified objects"},
  63. {"kurtosis2", KURTOSIS2, "(2-pass) Kurtosis of values in specified objects"},
  64. {0, 0, 0}
  65. };
  66. int main(int argc, char **argv)
  67. {
  68. static DCELL *count, *sum, *mean, *sumu, *sum2, *sum3, *sum4, *min, *max;
  69. DCELL *result;
  70. struct GModule *module;
  71. struct {
  72. struct Option *method, *basemap, *covermap, *output;
  73. } opt;
  74. struct {
  75. struct Flag *c, *r;
  76. } flag;
  77. char methods[2048];
  78. const char *basemap, *covermap, *output;
  79. int usecats;
  80. int reclass;
  81. int base_fd, cover_fd;
  82. struct Categories cats;
  83. CELL *base_buf;
  84. DCELL *cover_buf;
  85. struct Range range;
  86. CELL mincat, ncats;
  87. int method;
  88. int rows, cols;
  89. int row, col, i;
  90. G_gisinit(argv[0]);
  91. module = G_define_module();
  92. G_add_keyword(_("raster"));
  93. G_add_keyword(_("statistics"));
  94. module->description =
  95. _("Calculates category or object oriented statistics (accumulator-based statistics).");
  96. opt.basemap = G_define_standard_option(G_OPT_R_BASE);
  97. opt.covermap = G_define_standard_option(G_OPT_R_COVER);
  98. opt.method = G_define_option();
  99. opt.method->key = "method";
  100. opt.method->type = TYPE_STRING;
  101. opt.method->required = YES;
  102. opt.method->description = _("Method of object-based statistic");
  103. for (i = 0; menu[i].name; i++) {
  104. if (i)
  105. strcat(methods, ",");
  106. else
  107. *(methods) = 0;
  108. strcat(methods, menu[i].name);
  109. }
  110. opt.method->options = G_store(methods);
  111. for (i = 0; menu[i].name; i++) {
  112. if (i)
  113. strcat(methods, ";");
  114. else
  115. *(methods) = 0;
  116. strcat(methods, menu[i].name);
  117. strcat(methods, ";");
  118. strcat(methods, menu[i].text);
  119. }
  120. opt.method->descriptions = G_store(methods);
  121. opt.output = G_define_standard_option(G_OPT_R_OUTPUT);
  122. opt.output->description = _("Resultant raster map");
  123. opt.output->required = YES;
  124. flag.c = G_define_flag();
  125. flag.c->key = 'c';
  126. flag.c->description =
  127. _("Cover values extracted from the category labels of the cover map");
  128. flag.r = G_define_flag();
  129. flag.r->key = 'r';
  130. flag.r->description =
  131. _("Create reclass map with statistics as category labels");
  132. if (G_parser(argc, argv))
  133. exit(EXIT_FAILURE);
  134. basemap = opt.basemap->answer;
  135. covermap = opt.covermap->answer;
  136. output = opt.output->answer;
  137. usecats = flag.c->answer;
  138. reclass = flag.r->answer;
  139. for (i = 0; menu[i].name; i++)
  140. if (strcmp(menu[i].name, opt.method->answer) == 0)
  141. break;
  142. if (!menu[i].name) {
  143. G_warning(_("<%s=%s> unknown %s"), opt.method->key, opt.method->answer,
  144. opt.method->key);
  145. G_usage();
  146. exit(EXIT_FAILURE);
  147. }
  148. method = menu[i].val;
  149. base_fd = Rast_open_old(basemap, "");
  150. cover_fd = Rast_open_old(covermap, "");
  151. if (usecats && Rast_read_cats(covermap, "", &cats) < 0)
  152. G_fatal_error(_("Unable to read category file of cover map <%s>"), covermap);
  153. if (Rast_map_is_fp(basemap, "") != 0)
  154. G_fatal_error(_("The base map must be an integer (CELL) map"));
  155. if (Rast_read_range(basemap, "", &range) < 0)
  156. G_fatal_error(_("Unable to read range of base map <%s>"), basemap);
  157. mincat = range.min;
  158. ncats = range.max - range.min + 1;
  159. rows = Rast_window_rows();
  160. cols = Rast_window_cols();
  161. switch (method) {
  162. case COUNT:
  163. count = G_calloc(ncats, sizeof(DCELL));
  164. break;
  165. case SUM:
  166. sum = G_calloc(ncats, sizeof(DCELL));
  167. break;
  168. case MIN:
  169. min = G_malloc(ncats * sizeof(DCELL));
  170. break;
  171. case MAX:
  172. max = G_malloc(ncats * sizeof(DCELL));
  173. break;
  174. case RANGE:
  175. min = G_malloc(ncats * sizeof(DCELL));
  176. max = G_malloc(ncats * sizeof(DCELL));
  177. break;
  178. case AVERAGE:
  179. case ADEV:
  180. case VARIANCE2:
  181. case STDDEV2:
  182. case SKEWNESS2:
  183. case KURTOSIS2:
  184. count = G_calloc(ncats, sizeof(DCELL));
  185. sum = G_calloc(ncats, sizeof(DCELL));
  186. break;
  187. case VARIANCE1:
  188. case STDDEV1:
  189. count = G_calloc(ncats, sizeof(DCELL));
  190. sum = G_calloc(ncats, sizeof(DCELL));
  191. sum2 = G_calloc(ncats, sizeof(DCELL));
  192. break;
  193. case SKEWNESS1:
  194. count = G_calloc(ncats, sizeof(DCELL));
  195. sum = G_calloc(ncats, sizeof(DCELL));
  196. sum2 = G_calloc(ncats, sizeof(DCELL));
  197. sum3 = G_calloc(ncats, sizeof(DCELL));
  198. break;
  199. case KURTOSIS1:
  200. count = G_calloc(ncats, sizeof(DCELL));
  201. sum = G_calloc(ncats, sizeof(DCELL));
  202. sum2 = G_calloc(ncats, sizeof(DCELL));
  203. sum4 = G_calloc(ncats, sizeof(DCELL));
  204. break;
  205. }
  206. if (min)
  207. for (i = 0; i < ncats; i++)
  208. min[i] = 1e300;
  209. if (max)
  210. for (i = 0; i < ncats; i++)
  211. max[i] = -1e300;
  212. base_buf = Rast_allocate_c_buf();
  213. cover_buf = Rast_allocate_d_buf();
  214. G_message(_("First pass"));
  215. for (row = 0; row < rows; row++) {
  216. Rast_get_c_row(base_fd, base_buf, row);
  217. Rast_get_d_row(cover_fd, cover_buf, row);
  218. for (col = 0; col < cols; col++) {
  219. int n;
  220. DCELL v;
  221. if (Rast_is_c_null_value(&base_buf[col]))
  222. continue;
  223. if (Rast_is_d_null_value(&cover_buf[col]))
  224. continue;
  225. n = base_buf[col] - mincat;
  226. if (n < 0 || n >= ncats)
  227. continue;
  228. v = cover_buf[col];
  229. if (usecats)
  230. sscanf(Rast_get_c_cat((CELL *) &v, &cats), "%lf", &v);
  231. if (count)
  232. count[n]++;
  233. if (sum)
  234. sum[n] += v;
  235. if (sum2)
  236. sum2[n] += v * v;
  237. if (sum3)
  238. sum3[n] += v * v * v;
  239. if (sum4)
  240. sum4[n] += v * v * v * v;
  241. if (min && min[n] > v)
  242. min[n] = v;
  243. if (max && max[n] < v)
  244. max[n] = v;
  245. }
  246. G_percent(row, rows, 2);
  247. }
  248. G_percent(row, rows, 2);
  249. result = G_calloc(ncats, sizeof(DCELL));
  250. switch (method) {
  251. case ADEV:
  252. case VARIANCE2:
  253. case STDDEV2:
  254. case SKEWNESS2:
  255. case KURTOSIS2:
  256. mean = G_calloc(ncats, sizeof(DCELL));
  257. for (i = 0; i < ncats; i++)
  258. mean[i] = sum[i] / count[i];
  259. G_free(sum);
  260. break;
  261. }
  262. switch (method) {
  263. case ADEV:
  264. sumu = G_calloc(ncats, sizeof(DCELL));
  265. break;
  266. case VARIANCE2:
  267. case STDDEV2:
  268. sum2 = G_calloc(ncats, sizeof(DCELL));
  269. break;
  270. case SKEWNESS2:
  271. sum2 = G_calloc(ncats, sizeof(DCELL));
  272. sum3 = G_calloc(ncats, sizeof(DCELL));
  273. break;
  274. case KURTOSIS2:
  275. sum2 = G_calloc(ncats, sizeof(DCELL));
  276. sum4 = G_calloc(ncats, sizeof(DCELL));
  277. break;
  278. }
  279. if (mean) {
  280. G_message(_("Second pass"));
  281. for (row = 0; row < rows; row++) {
  282. Rast_get_c_row(base_fd, base_buf, row);
  283. Rast_get_d_row(cover_fd, cover_buf, row);
  284. for (col = 0; col < cols; col++) {
  285. int n;
  286. DCELL v, d;
  287. if (Rast_is_c_null_value(&base_buf[col]))
  288. continue;
  289. if (Rast_is_d_null_value(&cover_buf[col]))
  290. continue;
  291. n = base_buf[col] - mincat;
  292. if (n < 0 || n >= ncats)
  293. continue;
  294. v = cover_buf[col];
  295. if (usecats)
  296. sscanf(Rast_get_c_cat((CELL *) &v, &cats), "%lf", &v);
  297. d = v - mean[n];
  298. if (sumu)
  299. sumu[n] += fabs(d);
  300. if (sum2)
  301. sum2[n] += d * d;
  302. if (sum3)
  303. sum3[n] += d * d * d;
  304. if (sum4)
  305. sum4[n] += d * d * d * d;
  306. }
  307. G_percent(row, rows, 2);
  308. }
  309. G_percent(row, rows, 2);
  310. G_free(mean);
  311. G_free(cover_buf);
  312. }
  313. switch (method) {
  314. case COUNT:
  315. for (i = 0; i < ncats; i++)
  316. result[i] = count[i];
  317. break;
  318. case SUM:
  319. for (i = 0; i < ncats; i++)
  320. result[i] = sum[i];
  321. break;
  322. case AVERAGE:
  323. for (i = 0; i < ncats; i++)
  324. result[i] = sum[i] / count[i];
  325. break;
  326. case MIN:
  327. for (i = 0; i < ncats; i++)
  328. result[i] = min[i];
  329. break;
  330. case MAX:
  331. for (i = 0; i < ncats; i++)
  332. result[i] = max[i];
  333. break;
  334. case RANGE:
  335. for (i = 0; i < ncats; i++)
  336. result[i] = max[i] - min[i];
  337. case VARIANCE1:
  338. for (i = 0; i < ncats; i++) {
  339. double n = count[i];
  340. double var = (sum2[i] - sum[i] * sum[i] / n) / (n - 1);
  341. result[i] = var;
  342. }
  343. break;
  344. case STDDEV1:
  345. for (i = 0; i < ncats; i++) {
  346. double n = count[i];
  347. double var = (sum2[i] - sum[i] * sum[i] / n) / (n - 1);
  348. result[i] = sqrt(var);
  349. }
  350. break;
  351. case SKEWNESS1:
  352. for (i = 0; i < ncats; i++) {
  353. double n = count[i];
  354. double var = (sum2[i] - sum[i] * sum[i] / n) / (n - 1);
  355. double skew = (sum3[i] / n
  356. - 3 * sum[i] * sum2[i] / (n * n)
  357. + 2 * sum[i] * sum[i] * sum[i] / (n * n * n))
  358. / (pow(var, 1.5));
  359. result[i] = skew;
  360. }
  361. break;
  362. case KURTOSIS1:
  363. for (i = 0; i < ncats; i++) {
  364. double n = count[i];
  365. double var = (sum2[i] - sum[i] * sum[i] / n) / (n - 1);
  366. double kurt = (sum4[i] / n
  367. - 4 * sum[i] * sum3[i] / (n * n)
  368. + 6 * sum[i] * sum[i] * sum2[i] / (n * n * n)
  369. - 3 * sum[i] * sum[i] * sum[i] * sum[i] / (n * n * n * n))
  370. / (var * var) - 3;
  371. result[i] = kurt;
  372. }
  373. break;
  374. case ADEV:
  375. for (i = 0; i < ncats; i++)
  376. result[i] = sumu[i] / count[i];
  377. break;
  378. case VARIANCE2:
  379. for (i = 0; i < ncats; i++)
  380. result[i] = sum2[i] / (count[i] - 1);
  381. break;
  382. case STDDEV2:
  383. for (i = 0; i < ncats; i++)
  384. result[i] = sqrt(sum2[i] / (count[i] - 1));
  385. break;
  386. case SKEWNESS2:
  387. for (i = 0; i < ncats; i++) {
  388. double n = count[i];
  389. double var = sum2[i] / (n - 1);
  390. double sdev = sqrt(var);
  391. result[i] = sum3[i] / (sdev * sdev * sdev) / n;
  392. }
  393. G_free(count);
  394. G_free(sum2);
  395. G_free(sum3);
  396. break;
  397. case KURTOSIS2:
  398. for (i = 0; i < ncats; i++) {
  399. double n = count[i];
  400. double var = sum2[i] / (n - 1);
  401. result[i] = sum4[i] / (var * var) / n - 3;
  402. }
  403. G_free(count);
  404. G_free(sum2);
  405. G_free(sum4);
  406. break;
  407. }
  408. if (reclass) {
  409. const char *tempfile = G_tempfile();
  410. char *input_arg = G_malloc(strlen(basemap) + 7);
  411. char *output_arg = G_malloc(strlen(output) + 8);
  412. char *rules_arg = G_malloc(strlen(tempfile) + 7);
  413. FILE *fp;
  414. G_message(_("Generating reclass map"));
  415. sprintf(input_arg, "input=%s", basemap);
  416. sprintf(output_arg, "output=%s", output);
  417. sprintf(rules_arg, "rules=%s", tempfile);
  418. fp = fopen(tempfile, "w");
  419. if (!fp)
  420. G_fatal_error(_("Unable to open temporary file"));
  421. for (i = 0; i < ncats; i++)
  422. fprintf(fp, "%d = %d %f\n", mincat + i, mincat + i, result[i]);
  423. fclose(fp);
  424. G_spawn("r.reclass", "r.reclass", input_arg, output_arg, rules_arg, NULL);
  425. }
  426. else {
  427. int out_fd;
  428. DCELL *out_buf;
  429. struct Colors colors;
  430. G_message(_("Writing output map"));
  431. out_fd = Rast_open_fp_new(output);
  432. out_buf = Rast_allocate_d_buf();
  433. for (row = 0; row < rows; row++) {
  434. Rast_get_c_row(base_fd, base_buf, row);
  435. for (col = 0; col < cols; col++)
  436. if (Rast_is_c_null_value(&base_buf[col]))
  437. Rast_set_d_null_value(&out_buf[col], 1);
  438. else
  439. out_buf[col] = result[base_buf[col] - mincat];
  440. Rast_put_d_row(out_fd, out_buf);
  441. G_percent(row, rows, 2);
  442. }
  443. G_percent(row, rows, 2);
  444. Rast_close(out_fd);
  445. if (Rast_read_colors(covermap, "", &colors) > 0)
  446. Rast_write_colors(output, G_mapset(), &colors);
  447. }
  448. return 0;
  449. }