open_files.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525
  1. /* PURPOSE: opening input rasters and creating segmentation files */
  2. #include <stdlib.h>
  3. #include <grass/gis.h>
  4. #include <grass/glocale.h>
  5. #include <grass/imagery.h>
  6. #include <grass/segment.h> /* segmentation library */
  7. #include "iseg.h"
  8. static int load_seeds(struct globals *, int, int, int);
  9. static int read_seed(struct globals *, SEGMENT *, struct rc *, int);
  10. static int manage_memory(int, int, struct globals *);
  11. int open_files(struct globals *globals)
  12. {
  13. struct Ref Ref; /* group reference list */
  14. int *in_fd, bounds_fd, is_null;
  15. int n, row, col, srows, scols, inlen, outlen, nseg;
  16. DCELL **inbuf; /* buffers to store lines from each of the imagery group rasters */
  17. CELL *boundsbuf, bounds_null, bounds_val;
  18. int have_bounds = 0;
  19. CELL s, id;
  20. struct Range range; /* min/max values of bounds map */
  21. struct FPRange *fp_range; /* min/max values of each input raster */
  22. DCELL *min, *max;
  23. struct ngbr_stats Ri, Rk;
  24. /*allocate memory for flags */
  25. globals->null_flag = flag_create(globals->nrows, globals->ncols);
  26. globals->candidate_flag = flag_create(globals->nrows, globals->ncols);
  27. G_debug(1, "Checking image group...");
  28. /* ****** open the input rasters ******* */
  29. if (!I_get_group_ref(globals->image_group, &Ref))
  30. G_fatal_error(_("Unable to read REF file for group <%s>"),
  31. globals->image_group);
  32. if (Ref.nfiles <= 0)
  33. G_fatal_error(_("Group <%s> contains no raster maps"),
  34. globals->image_group);
  35. /* Read Imagery Group */
  36. in_fd = G_malloc(Ref.nfiles * sizeof(int));
  37. inbuf = (DCELL **) G_malloc(Ref.nfiles * sizeof(DCELL *));
  38. fp_range = G_malloc(Ref.nfiles * sizeof(struct FPRange));
  39. min = G_malloc(Ref.nfiles * sizeof(DCELL));
  40. max = G_malloc(Ref.nfiles * sizeof(DCELL));
  41. G_debug(1, "Opening input rasters...");
  42. for (n = 0; n < Ref.nfiles; n++) {
  43. inbuf[n] = Rast_allocate_d_buf();
  44. in_fd[n] = Rast_open_old(Ref.file[n].name, Ref.file[n].mapset);
  45. }
  46. /* Get min/max values of each input raster for scaling */
  47. globals->max_diff = 0.;
  48. for (n = 0; n < Ref.nfiles; n++) {
  49. /* returns -1 on error, 2 on empty range, quiting either way. */
  50. if (Rast_read_fp_range(Ref.file[n].name, Ref.file[n].mapset, &fp_range[n]) != 1)
  51. G_fatal_error(_("No min/max found in raster map <%s>"),
  52. Ref.file[n].name);
  53. Rast_get_fp_range_min_max(&(fp_range[n]), &min[n], &max[n]);
  54. G_debug(1, "Range for layer %d: min = %f, max = %f",
  55. n, min[n], max[n]);
  56. }
  57. if (globals->weighted == FALSE)
  58. globals->max_diff = Ref.nfiles;
  59. else {
  60. /* max difference with selected similarity method */
  61. Ri.mean = max;
  62. Rk.mean = min;
  63. globals->max_diff = 1;
  64. globals->max_diff = (*globals->calculate_similarity) (&Ri, &Rk, globals);
  65. }
  66. /* ********** find out file segmentation size ************ */
  67. G_debug(1, "Calculate temp file sizes...");
  68. globals->nbands = Ref.nfiles;
  69. /* size of each element to be stored */
  70. inlen = sizeof(DCELL) * Ref.nfiles;
  71. outlen = sizeof(CELL);
  72. G_debug(1, "data element size, in: %d , out: %d ", inlen, outlen);
  73. globals->datasize = sizeof(double) * globals->nbands;
  74. /* segment lib segment size */
  75. srows = 64;
  76. scols = 64;
  77. nseg = manage_memory(srows, scols, globals);
  78. /* create segment structures */
  79. if (segment_open
  80. (&globals->bands_seg, G_tempfile(), globals->nrows, globals->ncols, srows,
  81. scols, inlen, nseg) != 1)
  82. G_fatal_error("Unable to create input temporary files");
  83. if (segment_open
  84. (&globals->rid_seg, G_tempfile(), globals->nrows, globals->ncols, srows,
  85. scols, outlen, nseg * 2) != 1)
  86. G_fatal_error("Unable to create input temporary files");
  87. /* load input bands to segment structure */
  88. G_debug(1, "Reading input rasters into segmentation data files...");
  89. globals->bands_val = (double *)G_malloc(inlen);
  90. globals->second_val = (double *)G_malloc(inlen);
  91. /* initial segment ID */
  92. s = 1;
  93. globals->row_min = globals->nrows;
  94. globals->row_max = 0;
  95. globals->col_min = globals->ncols;
  96. globals->col_max = 0;
  97. for (row = 0; row < globals->nrows; row++) {
  98. for (n = 0; n < Ref.nfiles; n++) {
  99. Rast_get_d_row(in_fd[n], inbuf[n], row);
  100. }
  101. for (col = 0; col < globals->ncols; col++) {
  102. is_null = 0; /*Assume there is data */
  103. for (n = 0; n < Ref.nfiles; n++) {
  104. if (Rast_is_d_null_value(&inbuf[n][col])) {
  105. is_null = 1;
  106. globals->bands_val[n] = inbuf[n][col];
  107. }
  108. else {
  109. if (globals->weighted == TRUE)
  110. globals->bands_val[n] = inbuf[n][col];
  111. else
  112. /* scaled version */
  113. globals->bands_val[n] = (inbuf[n][col] - min[n]) / (max[n] - min[n]);
  114. }
  115. }
  116. segment_put(&globals->bands_seg, (void *)globals->bands_val, row, col);
  117. if (!is_null) {
  118. FLAG_UNSET(globals->null_flag, row, col);
  119. if (!globals->seeds) {
  120. /* sequentially number all cells with a unique segment ID */
  121. id = s;
  122. s++;
  123. }
  124. /* get min/max row/col to narrow the processing window */
  125. if (globals->row_min > row)
  126. globals->row_min = row;
  127. if (globals->row_max < row)
  128. globals->row_max = row;
  129. if (globals->col_min > col)
  130. globals->col_min = col;
  131. if (globals->col_max < col)
  132. globals->col_max = col;
  133. }
  134. else {
  135. /* all input bands NULL */
  136. Rast_set_c_null_value(&id, 1);
  137. /*Rast_set_c_null_value(&(globals->rid[row][col]), 1);*/
  138. FLAG_SET(globals->null_flag, row, col);
  139. }
  140. if (!globals->seeds)
  141. segment_put(&globals->rid_seg, (void *)&id, row, col);
  142. }
  143. }
  144. G_debug(1, "nrows: %d, min row: %d, max row %d", globals->nrows, globals->row_min, globals->row_max);
  145. G_debug(1, "ncols: %d, min col: %d, max col %d", globals->ncols, globals->col_min, globals->col_max);
  146. globals->row_max++;
  147. globals->col_max++;
  148. globals->ncells = (globals->row_max - globals->row_min) * (globals->col_max - globals->col_min);
  149. /* bounds/constraints */
  150. Rast_set_c_null_value(&globals->upper_bound, 1);
  151. Rast_set_c_null_value(&globals->lower_bound, 1);
  152. if (globals->bounds_map != NULL) {
  153. if (segment_open
  154. (&globals->bounds_seg, G_tempfile(), globals->nrows, globals->ncols,
  155. srows, scols, sizeof(CELL), nseg) != TRUE)
  156. G_fatal_error("Unable to create bounds temporary files");
  157. if (Rast_read_range(globals->bounds_map, globals->bounds_mapset, &range) != 1)
  158. G_fatal_error(_("No min/max found in raster map <%s>"),
  159. globals->bounds_map);
  160. Rast_get_range_min_max(&range, &globals->upper_bound,
  161. &globals->lower_bound);
  162. if (Rast_is_c_null_value(&globals->upper_bound) ||
  163. Rast_is_c_null_value(&globals->lower_bound)) {
  164. G_fatal_error(_("No min/max found in raster map <%s>"),
  165. globals->bounds_map);
  166. }
  167. bounds_null = globals->upper_bound = globals->lower_bound + 1;
  168. bounds_fd = Rast_open_old(globals->bounds_map, globals->bounds_mapset);
  169. boundsbuf = Rast_allocate_c_buf();
  170. for (row = 0; row < globals->nrows; row++) {
  171. Rast_get_c_row(bounds_fd, boundsbuf, row);
  172. for (col = 0; col < globals->ncols; col++) {
  173. if (FLAG_GET(globals->null_flag, row, col)) {
  174. Rast_set_c_null_value(&bounds_val, 1);
  175. }
  176. else {
  177. if (Rast_is_c_null_value(&boundsbuf[col]))
  178. boundsbuf[col] = bounds_null;
  179. else {
  180. have_bounds = 1;
  181. if (globals->lower_bound > boundsbuf[col])
  182. globals->lower_bound = boundsbuf[col];
  183. }
  184. }
  185. segment_put(&globals->bounds_seg, &bounds_val, row, col);
  186. }
  187. }
  188. Rast_close(bounds_fd);
  189. G_free(boundsbuf);
  190. if (!have_bounds) {
  191. G_warning(_("There are no boundary constraints in '%s'"), globals->bounds_map);
  192. Rast_set_c_null_value(&globals->upper_bound, 1);
  193. Rast_set_c_null_value(&globals->lower_bound, 1);
  194. segment_close(&globals->bounds_seg);
  195. globals->bounds_map = NULL;
  196. globals->bounds_mapset = NULL;
  197. }
  198. }
  199. else {
  200. G_debug(1, "no boundary constraint supplied.");
  201. }
  202. /* other info */
  203. globals->candidate_count = 0; /* counter for remaining candidate pixels */
  204. /* Free memory */
  205. for (n = 0; n < Ref.nfiles; n++) {
  206. G_free(inbuf[n]);
  207. Rast_close(in_fd[n]);
  208. }
  209. globals->rs.sum = G_malloc(globals->datasize);
  210. globals->rs.mean = G_malloc(globals->datasize);
  211. globals->reg_tree = rgtree_create(globals->nbands, globals->datasize);
  212. globals->n_regions = s - 1;
  213. if (globals->seeds) {
  214. load_seeds(globals, srows, scols, nseg);
  215. }
  216. G_free(inbuf);
  217. G_free(in_fd);
  218. G_free(fp_range);
  219. G_free(min);
  220. G_free(max);
  221. /* Need to clean up anything else? */
  222. return TRUE;
  223. }
  224. static int load_seeds(struct globals *globals, int srows, int scols, int nseg)
  225. {
  226. int row, col;
  227. SEGMENT seeds_seg;
  228. CELL *seeds_buf, seeds_val;
  229. int seeds_fd;
  230. int spos, sneg, have_seeds;
  231. struct rc Ri;
  232. G_debug(1, "load_seeds()");
  233. G_message(_("Loading seeds from '%s'"), globals->seeds);
  234. if (segment_open
  235. (&seeds_seg, G_tempfile(), globals->nrows, globals->ncols,
  236. srows, scols, sizeof(CELL), nseg) != TRUE)
  237. G_fatal_error("Unable to create bounds temporary files");
  238. seeds_fd = Rast_open_old(globals->seeds, "");
  239. seeds_buf = Rast_allocate_c_buf();
  240. have_seeds = 0;
  241. /* load seeds map to segment structure */
  242. for (row = 0; row < globals->nrows; row++) {
  243. Rast_get_c_row(seeds_fd, seeds_buf, row);
  244. for (col = 0; col < globals->ncols; col++) {
  245. if (FLAG_GET(globals->null_flag, row, col)) {
  246. Rast_set_c_null_value(&seeds_val, 1);
  247. }
  248. else {
  249. seeds_val = seeds_buf[col];
  250. if (!Rast_is_c_null_value(&seeds_buf[col]))
  251. have_seeds = 1;
  252. }
  253. segment_put(&seeds_seg, &seeds_val, row, col);
  254. }
  255. }
  256. if (!have_seeds) {
  257. G_warning(_("No seeds found in '%s'!"), globals->seeds);
  258. G_free(seeds_buf);
  259. Rast_close(seeds_fd);
  260. segment_close(&seeds_seg);
  261. return 0;
  262. }
  263. spos = 1;
  264. sneg = -1;
  265. /* convert seeds to regions */
  266. G_debug(1, "convert seeds to regions");
  267. Rast_set_c_null_value(&seeds_val, 1);
  268. for (row = 0; row < globals->nrows; row++) {
  269. Rast_get_c_row(seeds_fd, seeds_buf, row);
  270. for (col = 0; col < globals->ncols; col++) {
  271. if (FLAG_GET(globals->null_flag, row, col)) {
  272. segment_put(&globals->rid_seg, &seeds_val, row, col);
  273. }
  274. else if (!(FLAG_GET(globals->candidate_flag, row, col))) {
  275. if (Rast_is_c_null_value(&(seeds_buf[col])) || seeds_buf[col] < 1) {
  276. segment_put(&globals->rid_seg, &sneg, row, col);
  277. sneg--;
  278. }
  279. else {
  280. Ri.row = row;
  281. Ri.col = col;
  282. read_seed(globals, &seeds_seg, &Ri, spos);
  283. spos++;
  284. }
  285. }
  286. }
  287. }
  288. G_free(seeds_buf);
  289. Rast_close(seeds_fd);
  290. segment_close(&seeds_seg);
  291. globals->n_regions = spos - 1;
  292. flag_clear_all(globals->candidate_flag);
  293. return 1;
  294. }
  295. static int read_seed(struct globals *globals, SEGMENT *seeds_seg, struct rc *Ri, int new_id)
  296. {
  297. int n, i, Ri_id, Rk_id;
  298. struct rc ngbr_rc, next;
  299. struct rclist rilist;
  300. int neighbors[8][2];
  301. G_debug(4, "read_seed()");
  302. /* get Ri's segment ID from input seeds */
  303. segment_get(seeds_seg, &Ri_id, Ri->row, Ri->col);
  304. /* set new segment id */
  305. segment_put(&globals->rid_seg, &new_id, Ri->row, Ri->col);
  306. /* set candidate flag */
  307. FLAG_SET(globals->candidate_flag, Ri->row, Ri->col);
  308. /* initialize region stats */
  309. globals->rs.count = 1;
  310. globals->rs.id = new_id;
  311. segment_get(&globals->bands_seg, (void *)globals->bands_val,
  312. Ri->row, Ri->col);
  313. for (i = 0; i < globals->nbands; i++) {
  314. globals->rs.sum[i] = globals->bands_val[i];
  315. globals->rs.mean[i] = globals->bands_val[i];
  316. }
  317. /* go through seed, spreading outwards from head */
  318. rclist_init(&rilist);
  319. rclist_add(&rilist, Ri->row, Ri->col);
  320. while (rclist_drop(&rilist, &next)) {
  321. G_debug(5, "find_pixel_neighbors for row: %d , col %d",
  322. next.row, next.col);
  323. globals->find_neighbors(next.row, next.col, neighbors);
  324. for (n = 0; n < globals->nn; n++) {
  325. ngbr_rc.row = neighbors[n][0];
  326. ngbr_rc.col = neighbors[n][1];
  327. if (ngbr_rc.row < 0 || ngbr_rc.row >= globals->nrows ||
  328. ngbr_rc.col < 0 || ngbr_rc.col >= globals->ncols) {
  329. continue;
  330. }
  331. if (FLAG_GET(globals->null_flag, ngbr_rc.row, ngbr_rc.col)) {
  332. continue;
  333. }
  334. if (FLAG_GET(globals->candidate_flag, ngbr_rc.row, ngbr_rc.col)) {
  335. continue;
  336. }
  337. segment_get(seeds_seg, (void *) &Rk_id, ngbr_rc.row, ngbr_rc.col);
  338. G_debug(5, "Rk ID = %d Ri ID = %d", Rk_id, Ri_id);
  339. if (Rk_id != Ri_id) {
  340. continue;
  341. }
  342. /* set segment id */
  343. segment_put(&globals->rid_seg, &new_id, ngbr_rc.row, ngbr_rc.col);
  344. /* set candidate flag */
  345. FLAG_SET(globals->candidate_flag, ngbr_rc.row, ngbr_rc.col);
  346. /* add to list of cells to check */
  347. rclist_add(&rilist, ngbr_rc.row, ngbr_rc.col);
  348. /* update region stats */
  349. segment_get(&globals->bands_seg, (void *)globals->bands_val,
  350. ngbr_rc.row, ngbr_rc.col);
  351. for (i = 0; i < globals->nbands; i++) {
  352. globals->rs.sum[i] += globals->bands_val[i];
  353. }
  354. globals->rs.count++;
  355. }
  356. }
  357. if (rgtree_find(globals->reg_tree, &(globals->rs)) != NULL) {
  358. G_fatal_error(_("Segment %d is already registered!"), new_id);
  359. }
  360. /* insert into region tree */
  361. if (globals->rs.count >= globals->min_reg_size) {
  362. for (i = 0; i < globals->nbands; i++)
  363. globals->rs.mean[i] = globals->rs.sum[i] / globals->rs.count;
  364. rgtree_insert(globals->reg_tree, &(globals->rs));
  365. }
  366. return 1;
  367. }
  368. static int manage_memory(int srows, int scols, struct globals *globals)
  369. {
  370. double reg_size_mb, segs_mb;
  371. int reg_size_count, nseg, nseg_total;
  372. /* minimum region size to store in search tree */
  373. reg_size_mb = 2 * globals->datasize + /* mean, sum */
  374. 2 * sizeof(int) + /* id, count */
  375. sizeof(unsigned char) +
  376. 2 * sizeof(struct REG_NODE *);
  377. reg_size_mb /= (1024. * 1024.);
  378. /* put aside some memory for segment structures */
  379. segs_mb = globals->mb * 0.1;
  380. if (segs_mb > 10)
  381. segs_mb = 10;
  382. /* calculate number of region stats that can be kept in memory */
  383. reg_size_count = (globals->mb - segs_mb) / reg_size_mb;
  384. globals->min_reg_size = 4;
  385. if (reg_size_count < (double) globals->nrows * globals->ncols / globals->min_reg_size) {
  386. globals->min_reg_size = (double) globals->nrows * globals->ncols / reg_size_count;
  387. }
  388. else {
  389. reg_size_count = (double) globals->nrows * globals->ncols / globals->min_reg_size;
  390. /* recalculate segs_mb */
  391. segs_mb = globals->mb - reg_size_count * reg_size_mb;
  392. }
  393. G_verbose_message(_("Stats for regions with at least %d cells are stored in memory"),
  394. globals->min_reg_size);
  395. /* calculate number of segments in memory */
  396. if (globals->bounds_map != NULL) {
  397. /* input bands, segment ids, bounds map */
  398. nseg = (1024. * 1024. * segs_mb) /
  399. (sizeof(DCELL) * globals->nbands * srows * scols +
  400. sizeof(CELL) * 4 * srows * scols);
  401. }
  402. else {
  403. /* input bands, segment ids, bounds map */
  404. nseg = (1024. * 1024. * segs_mb) /
  405. (sizeof(DCELL) * globals->nbands * srows * scols +
  406. sizeof(CELL) * 2 * srows * scols);
  407. }
  408. nseg_total = (globals->nrows / srows + (globals->nrows % srows > 0)) *
  409. (globals->ncols / scols + (globals->ncols % scols > 0));
  410. if (nseg > nseg_total)
  411. nseg = nseg_total;
  412. G_debug(1, "current region: %d rows, %d cols", globals->nrows, globals->ncols);
  413. G_debug(1, "segmented to tiles with size: %d rows, %d cols", srows,
  414. scols);
  415. G_verbose_message(_("Number of segments in memory: %d of %d total"),
  416. nseg, nseg_total);
  417. return nseg;
  418. }