123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458 |
- #!/usr/bin/env python
- ############################################################################
- #
- # MODULE: i.panmethod
- #
- # AUTHOR(S): Overall script by Michael Barton (ASU)
- # Brovey transformation in i.fusion.brovey by Markus Neteler <<neteler at osgeo org>>
- # i.fusion brovey converted to Python by Glynn Clements
- # IHS and PCA transformation added by Michael Barton (ASU)
- # histogram matching algorithm by Michael Barton and Luca Delucchi, Fondazione E. Mach (Italy)
- # Thanks to Markus Metz for help with PCA inversion
- # Thanks to Hamish Bowman for parallel processing algorithm
- #
- # PURPOSE: Sharpening of 3 RGB channels using a high-resolution panchromatic channel
- #
- # COPYRIGHT: (C) 2002-2012 by the GRASS Development Team
- #
- # This program is free software under the GNU General Public
- # License (>=v2). Read the file COPYING that comes with GRASS
- # for details.
- #
- # REFERENCES:
- # Roller, N.E.G. and Cox, S., 1980. Comparison of Landsat MSS and merged MSS/RBV
- # data for analysis of natural vegetation. Proc. of the 14th International
- # Symposium on Remote Sensing of Environment, San Jose, Costa Rica, 23-30 April, pp. 1001-1007.
- #
- # Amarsaikhan, D., & Douglas, T. (2004). Data fusion and multisource image classification.
- # International Journal of Remote Sensing, 25(17), 3529-3539.
- #
- # Behnia, P. (2005). Comparison between four methods for data fusion of ETM+
- # multispectral and pan images. Geo-spatial Information Science, 8(2), 98-103
- #
- # for LANDSAT 5: see Pohl, C 1996 and others
- #
- #############################################################################
- #%Module
- #% description: Image fusion algorithms to sharpen multispectral with high-res panchromatic channels
- #% keyword: imagery
- #% keyword: fusion
- #% keyword: sharpen
- #% keyword: Brovey
- #% keyword: IHS
- #% keyword: HIS
- #% keyword: PCA
- #% overwrite: yes
- #%End
- #%option G_OPT_R_INPUT
- #% key: red
- #% description: Name of raster map to be used for <red>
- #%end
- #%option G_OPT_R_INPUT
- #% key: green
- #% description: Name of raster map to be used for <green>
- #%end
- #%option G_OPT_R_INPUT
- #% key: blue
- #% description: Name of raster map to be used for <blue>
- #%end
- #% option G_OPT_R_INPUT
- #% key: pan
- #% description: Name of raster map to be used for high resolution panchromatic channel
- #%end
- #%option G_OPT_R_BASENAME_OUTPUT
- #%end
- #%option
- #% key: method
- #% description: Method for pan sharpening
- #% options: brovey,ihs,pca
- #% answer: ihs
- #% required: yes
- #%end
- #%flag
- #% key: s
- #% description: Serial processing rather than parallel processing
- #%end
- #%flag
- #% key: l
- #% description: Rebalance blue channel for LANDSAT
- #%end
- import os
- try:
- import numpy as np
- hasNumPy = True
- except ImportError:
- hasNumPy = False
- import grass.script as grass
- from grass.script.utils import decode
- # i18N
- import gettext
- gettext.install('grassmods', os.path.join(os.getenv("GISBASE"), 'locale'))
- def main():
- if not hasNumPy:
- grass.fatal(_("Required dependency NumPy not found. Exiting."))
- sharpen = options['method'] # sharpening algorithm
- ms1 = options['blue'] # blue channel
- ms2 = options['green'] # green channel
- ms3 = options['red'] # red channel
- pan = options['pan'] # high res pan channel
- out = options['output'] # prefix for output RGB maps
- bladjust = flags['l'] # adjust blue channel
- sproc = flags['s'] # serial processing
- outb = grass.core.find_file('%s_blue' % out)
- outg = grass.core.find_file('%s_green' % out)
- outr = grass.core.find_file('%s_red' % out)
- if (outb['name'] != '' or outg['name'] != '' or outr['name'] != '') and not grass.overwrite():
- grass.warning(_('Maps with selected output prefix names already exist.'
- ' Delete them or use overwrite flag'))
- return
- pid = str(os.getpid())
- # get PAN resolution:
- kv = grass.raster_info(map=pan)
- nsres = kv['nsres']
- ewres = kv['ewres']
- panres = (nsres + ewres) / 2
- # clone current region
- grass.use_temp_region()
- grass.run_command('g.region', res=panres, align=pan)
- grass.message(_("Performing pan sharpening with hi res pan image: %f" % panres))
- if sharpen == "brovey":
- grass.verbose(_("Using Brovey algorithm"))
- # pan/intensity histogram matching using linear regression
- outname = 'tmp%s_pan1' % pid
- panmatch1 = matchhist(pan, ms1, outname)
- outname = 'tmp%s_pan2' % pid
- panmatch2 = matchhist(pan, ms2, outname)
- outname = 'tmp%s_pan3' % pid
- panmatch3 = matchhist(pan, ms3, outname)
- outr = '%s_red' % out
- outg = '%s_green' % out
- outb = '%s_blue' % out
- # calculate brovey transformation
- grass.message(_("Calculating Brovey transformation..."))
- if sproc:
- # serial processing
- e = '''eval(k = "$ms1" + "$ms2" + "$ms3")
- "$outr" = 1.0 * "$ms3" * "$panmatch3" / k
- "$outg" = 1.0 * "$ms2" * "$panmatch2" / k
- "$outb" = 1.0 * "$ms1" * "$panmatch1" / k'''
- grass.mapcalc(e, outr=outr, outg=outg, outb=outb,
- panmatch1=panmatch1, panmatch2=panmatch2,
- panmatch3=panmatch3, ms1=ms1, ms2=ms2, ms3=ms3,
- overwrite=True)
- else:
- # parallel processing
- pb = grass.mapcalc_start('%s_blue = (1.0 * %s * %s) / (%s + %s + %s)' %
- (out, ms1, panmatch1, ms1, ms2, ms3),
- overwrite=True)
- pg = grass.mapcalc_start('%s_green = (1.0 * %s * %s) / (%s + %s + %s)' %
- (out, ms2, panmatch2, ms1, ms2, ms3),
- overwrite=True)
- pr = grass.mapcalc_start('%s_red = (1.0 * %s * %s) / (%s + %s + %s)' %
- (out, ms3, panmatch3, ms1, ms2, ms3),
- overwrite=True)
- pb.wait()
- pg.wait()
- pr.wait()
- # Cleanup
- grass.run_command('g.remove', flags='f', quiet=True, type='raster',
- name='%s,%s,%s' % (panmatch1, panmatch2, panmatch3))
- elif sharpen == "ihs":
- grass.verbose(_("Using IHS<->RGB algorithm"))
- # transform RGB channels into IHS color space
- grass.message(_("Transforming to IHS color space..."))
- grass.run_command('i.rgb.his', overwrite=True,
- red=ms3,
- green=ms2,
- blue=ms1,
- hue="tmp%s_hue" % pid,
- intensity="tmp%s_int" % pid,
- saturation="tmp%s_sat" % pid)
- # pan/intensity histogram matching using linear regression
- target = "tmp%s_int" % pid
- outname = "tmp%s_pan_int" % pid
- panmatch = matchhist(pan, target, outname)
- # substitute pan for intensity channel and transform back to RGB color space
- grass.message(_("Transforming back to RGB color space and sharpening..."))
- grass.run_command('i.his.rgb', overwrite=True,
- hue="tmp%s_hue" % pid,
- intensity="%s" % panmatch,
- saturation="tmp%s_sat" % pid,
- red="%s_red" % out,
- green="%s_green" % out,
- blue="%s_blue" % out)
- # Cleanup
- grass.run_command('g.remove', flags='f', quiet=True, type='raster',
- name=panmatch)
- elif sharpen == "pca":
- grass.verbose(_("Using PCA/inverse PCA algorithm"))
- grass.message(_("Creating PCA images and calculating eigenvectors..."))
- # initial PCA with RGB channels
- pca_out = grass.read_command('i.pca', quiet=True, rescale='0,0',
- input='%s,%s,%s' % (ms1, ms2, ms3),
- output='tmp%s.pca' % pid)
- if len(pca_out) < 1:
- grass.fatal(_("Input has no data. Check region settings."))
- b1evect = []
- b2evect = []
- b3evect = []
- for l in pca_out.replace('(', ',').replace(')', ',').splitlines():
- b1evect.append(float(l.split(',')[1]))
- b2evect.append(float(l.split(',')[2]))
- b3evect.append(float(l.split(',')[3]))
- # inverse PCA with hi res pan channel substituted for principal component 1
- pca1 = 'tmp%s.pca.1' % pid
- pca2 = 'tmp%s.pca.2' % pid
- pca3 = 'tmp%s.pca.3' % pid
- b1evect1 = b1evect[0]
- b1evect2 = b1evect[1]
- b1evect3 = b1evect[2]
- b2evect1 = b2evect[0]
- b2evect2 = b2evect[1]
- b2evect3 = b2evect[2]
- b3evect1 = b3evect[0]
- b3evect2 = b3evect[1]
- b3evect3 = b3evect[2]
- outname = 'tmp%s_pan' % pid
- panmatch = matchhist(pan, ms1, outname)
- grass.message(_("Performing inverse PCA ..."))
- stats1 = grass.parse_command("r.univar", map=ms1, flags='g',
- parse=(grass.parse_key_val,
- {'sep': '='}))
- stats2 = grass.parse_command("r.univar", map=ms2, flags='g',
- parse=(grass.parse_key_val,
- {'sep': '='}))
- stats3 = grass.parse_command("r.univar", map=ms3, flags='g',
- parse=(grass.parse_key_val,
- {'sep': '='}))
- b1mean = float(stats1['mean'])
- b2mean = float(stats2['mean'])
- b3mean = float(stats3['mean'])
- if sproc:
- # serial processing
- e = '''eval(k = "$ms1" + "$ms2" + "$ms3")
- "$outr" = 1.0 * "$ms3" * "$panmatch3" / k
- "$outg" = 1.0 * "$ms2" * "$panmatch2" / k
- "$outb" = 1.0* "$ms1" * "$panmatch1" / k'''
- outr = '%s_red' % out
- outg = '%s_green' % out
- outb = '%s_blue' % out
- cmd1 = "$outb = (1.0 * $panmatch * $b1evect1) + ($pca2 * $b2evect1) + ($pca3 * $b3evect1) + $b1mean"
- cmd2 = "$outg = (1.0 * $panmatch * $b1evect2) + ($pca2 * $b2evect1) + ($pca3 * $b3evect2) + $b2mean"
- cmd3 = "$outr = (1.0 * $panmatch * $b1evect3) + ($pca2 * $b2evect3) + ($pca3 * $b3evect3) + $b3mean"
- cmd = '\n'.join([cmd1, cmd2, cmd3])
- grass.mapcalc(cmd, outb=outb, outg=outg, outr=outr,
- panmatch=panmatch, pca2=pca2, pca3=pca3,
- b1evect1=b1evect1, b2evect1=b2evect1, b3evect1=b3evect1,
- b1evect2=b1evect2, b2evect2=b2evect2, b3evect2=b3evect2,
- b1evect3=b1evect3, b2evect3=b2evect3, b3evect3=b3evect3,
- b1mean=b1mean, b2mean=b2mean, b3mean=b3mean,
- overwrite=True)
- else:
- # parallel processing
- pb = grass.mapcalc_start('%s_blue = (%s * %f) + (%s * %f) + (%s * %f) + %f'
- % (out, panmatch, b1evect1, pca2,
- b2evect1, pca3, b3evect1, b1mean),
- overwrite=True)
- pg = grass.mapcalc_start('%s_green = (%s * %f) + (%s * %f) + (%s * %f) + %f'
- % (out, panmatch, b1evect2, pca2,
- b2evect2, pca3, b3evect2, b2mean),
- overwrite=True)
- pr = grass.mapcalc_start('%s_red = (%s * %f) + (%s * %f) + (%s * ''%f) + %f'
- % (out, panmatch, b1evect3, pca2,
- b2evect3, pca3, b3evect3, b3mean),
- overwrite=True)
- pr.wait()
- pg.wait()
- pb.wait()
- # Cleanup
- grass.run_command('g.remove', flags='f', quiet=True, type="raster",
- pattern='tmp%s*,%s' % (pid, panmatch))
- # Could add other sharpening algorithms here, e.g. wavelet transformation
- grass.message(_("Assigning grey equalized color tables to output images..."))
- # equalized grey scales give best contrast
- for ch in ['red', 'green', 'blue']:
- grass.run_command('r.colors', quiet=True, map="%s_%s" % (out, ch),
- flags="e", color='grey')
- # Landsat too blue-ish because panchromatic band less sensitive to blue
- # light, so output blue channed can be modified
- if bladjust:
- grass.message(_("Adjusting blue channel color table..."))
- rules = grass.tempfile()
- colors = open(rules, 'w')
- colors.write('5 0 0 0\n20 200 200 200\n40 230 230 230\n67 255 255 255 \n')
- colors.close()
- grass.run_command('r.colors', map="%s_blue" % out, rules=rules)
- os.remove(rules)
- # output notice
- grass.verbose(_("The following pan-sharpened output maps have been generated:"))
- for ch in ['red', 'green', 'blue']:
- grass.verbose(_("%s_%s") % (out, ch))
- grass.verbose(_("To visualize output, run: g.region -p raster=%s_red" % out))
- grass.verbose(_("d.rgb r=%s_red g=%s_green b=%s_blue" % (out, out, out)))
- grass.verbose(_("If desired, combine channels into a single RGB map with 'r.composite'."))
- grass.verbose(_("Channel colors can be rebalanced using i.colors.enhance."))
- # write cmd history:
- for ch in ['red', 'green', 'blue']:
- grass.raster_history("%s_%s" % (out, ch))
- # create a group with the three output
- grass.run_command('i.group', group=out,
- input="{n}_red,{n}_blue,{n}_green".format(n=out))
- # Cleanup
- grass.run_command('g.remove', flags="f", type="raster",
- pattern="tmp%s*" % pid, quiet=True)
- def matchhist(original, target, matched):
- # pan/intensity histogram matching using numpy arrays
- grass.message(_("Histogram matching..."))
- # input images
- original = original.split('@')[0]
- target = target.split('@')[0]
- images = [original, target]
- # create a dictionary to hold arrays for each image
- arrays = {}
- for i in images:
- # calculate number of cells for each grey value for for each image
- stats_out = grass.pipe_command('r.stats', flags='cin', input=i,
- sep=':')
- stats = decode(stats_out.communicate()[0]).split('\n')[:-1]
- stats_dict = dict(s.split(':', 1) for s in stats)
- total_cells = 0 # total non-null cells
- for j in stats_dict:
- stats_dict[j] = int(stats_dict[j])
- if j != '*':
- total_cells += stats_dict[j]
- if total_cells < 1:
- grass.fatal(_("Input has no data. Check region settings."))
- # Make a 2x256 structured array for each image with a
- # cumulative distribution function (CDF) for each grey value.
- # Grey value is the integer (i4) and cdf is float (f4).
- arrays[i] = np.zeros((256, ), dtype=('i4,f4'))
- cum_cells = 0 # cumulative total of cells for sum of current and all lower grey values
- for n in range(0, 256):
- if str(n) in stats_dict:
- num_cells = stats_dict[str(n)]
- else:
- num_cells = 0
- cum_cells += num_cells
- # cdf is the the number of cells at or below a given grey value
- # divided by the total number of cells
- cdf = float(cum_cells) / float(total_cells)
- # insert values into array
- arrays[i][n] = (n, cdf)
- # open file for reclass rules
- outfile = open(grass.tempfile(), 'w')
- for i in arrays[original]:
- # for each grey value and corresponding cdf value in original, find the
- # cdf value in target that is closest to the target cdf value
- difference_list = []
- for j in arrays[target]:
- # make a list of the difference between each original cdf value and
- # the target cdf value
- difference_list.append(abs(i[1] - j[1]))
- # get the smallest difference in the list
- min_difference = min(difference_list)
- for j in arrays[target]:
- # find the grey value in target that corresponds to the cdf
- # closest to the original cdf
- if j[1] == i[1] + min_difference or j[1] == i[1] - min_difference:
- # build a reclass rules file from the original grey value and
- # corresponding grey value from target
- out_line = "%d = %d\n" % (i[0], j[0])
- outfile.write(out_line)
- break
- outfile.close()
- # create reclass of target from reclass rules file
- result = grass.core.find_file(matched, element='cell')
- if result['fullname']:
- grass.run_command('g.remove', flags='f', quiet=True, type='raster',
- name=matched)
- grass.run_command('r.reclass', input=original, out=matched,
- rules=outfile.name)
- else:
- grass.run_command('r.reclass', input=original, out=matched,
- rules=outfile.name)
- # Cleanup
- # remove the rules file
- grass.try_remove(outfile.name)
- # return reclass of target with histogram that matches original
- return matched
- if __name__ == "__main__":
- options, flags = grass.parser()
- main()
|