r.tileset.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391
  1. #!/usr/bin/env python
  2. ############################################################################
  3. #
  4. # MODULE: r.tileset
  5. #
  6. # AUTHOR(S): Cedric Shock
  7. # Updated for GRASS7 by Martin Landa, 2009
  8. #
  9. # PURPOSE: To produce tilings of regions in other projections.
  10. #
  11. # COPYRIGHT: (C) 2006-2009 by Cedric Shoc, Martin Landa, and GRASS development team
  12. #
  13. # This program is free software under the GNU General
  14. # Public License (>=v2). Read the file COPYING that
  15. # comes with GRASS for details.
  16. #
  17. #############################################################################
  18. # Bugs:
  19. # Does not know about meridians in projections. However, unlike the usual
  20. # hack used to find meridians, this code is perfectly happy with arbitrary
  21. # rotations and flips
  22. # The following are planned to be fixed in a future version, if it turns out
  23. # to be necessary for someone:
  24. # Does not generate optimal tilings. This means that between an appropriate
  25. # projection for a region and latitude longitude projection, in the
  26. # degenerate case, it may create tiles demanding up to twice the necessary
  27. # information. Requesting data from cylindrical projections near their poles
  28. # results in divergence. You really don't want to use source data from
  29. # someone who put it in a cylindrical projection near a pole, do you?
  30. # Not generating "optimal" tilings has another side effect; the sanity
  31. # of the destination region will not carry over to generating tiles of
  32. # realistic aspect ratio. This might be a problem for some WMS servers
  33. # presenting data in a highly inappropriate projection. Do you really
  34. # want their data?
  35. #%Module
  36. #% description: Produces tilings of the source projection for use in the destination region and projection.
  37. #% keywords: raster
  38. #% keywords: tiling
  39. #%End
  40. #%flag
  41. #% key: g
  42. #% description: Produces shell script output
  43. #%end
  44. #%flag
  45. #% key: w
  46. #% description: Produces web map server query string output
  47. #%end
  48. #%option
  49. #% key: region
  50. #% type: string
  51. #% description: Name of region to use instead of current region for bounds and resolution
  52. #%end
  53. #%option
  54. #% key: sourceproj
  55. #% type: string
  56. #% description: Source projection
  57. #% required : yes
  58. #%end
  59. #%option
  60. #% key: sourcescale
  61. #% type: string
  62. #% description: Conversion factor from units to meters in source projection
  63. #% answer : 1
  64. #%end
  65. #%option
  66. #% key: destproj
  67. #% type: string
  68. #% description: Destination projection, defaults to this location's projection
  69. #% required : no
  70. #%end
  71. #%option
  72. #% key: destscale
  73. #% type: string
  74. #% description: Conversion factor from units to meters in source projection
  75. #% required : no
  76. #%end
  77. #%option
  78. #% key: maxcols
  79. #% type: integer
  80. #% description: Maximum number of columns for a tile in the source projection
  81. #% answer: 1024
  82. #%end
  83. #%option
  84. #% key: maxrows
  85. #% type: integer
  86. #% description: Maximum number of rows for a tile in the source projection
  87. #% answer: 1024
  88. #%end
  89. #%option
  90. #% key: overlap
  91. #% type: integer
  92. #% description: Number of cells tiles should overlap in each direction
  93. #% answer: 0
  94. #%end
  95. #%option
  96. #% key: fs
  97. #% type: string
  98. #% description: Output field separator
  99. #% answer: |
  100. #%end
  101. #%option
  102. #% key: v
  103. #% type: integer
  104. #% description: Verbosity level
  105. #% answer: 0
  106. #%end
  107. # Data structures used in this program:
  108. # A bounding box:
  109. # 0 -> left, 1-> bottom, 2->right, 3-> top
  110. # A border:
  111. # An array of points indexed by 0 for "x" and 4 for "y" + by number 0, 1, 2, and 3
  112. # A reprojector [0] is name of source projection, [1] is name of destination
  113. # A projection - [0] is proj.4 text, [1] is scale
  114. import sys
  115. import subprocess
  116. import tempfile
  117. import math
  118. from grass.script import core as grass
  119. def bboxToPoints(bbox):
  120. """Make points that are the corners of a bounding box"""
  121. points = []
  122. points.append((bbox['w'], bbox['s']))
  123. points.append((bbox['w'], bbox['n']))
  124. points.append((bbox['e'], bbox['n']))
  125. points.append((bbox['e'], bbox['s']))
  126. return points
  127. def pointsToBbox(points):
  128. bbox = {}
  129. min_x = min_y = max_x = max_y = None
  130. for point in points:
  131. if not min_x:
  132. min_x = max_x = point[0]
  133. if not min_y:
  134. min_y = max_y = point[1]
  135. if min_x > point[0]:
  136. min_x = point[0]
  137. if max_x < point[0]:
  138. max_x = point[0]
  139. if min_y > point[1]:
  140. min_y = point[1]
  141. if max_y < point[1]:
  142. max_y = point[1]
  143. bbox['n'] = max_y
  144. bbox['s'] = min_y
  145. bbox['w'] = min_x
  146. bbox['e'] = max_x
  147. return bbox
  148. def project(file, source, dest):
  149. """Projects point (x, y) using projector"""
  150. points = []
  151. ret = grass.read_command('m.proj',
  152. quiet = True,
  153. flags = 'd',
  154. proj_in = source['proj'],
  155. proj_out = dest['proj'],
  156. fs = ';,;',
  157. input = file)
  158. if not ret:
  159. grass.fatal(cs2cs + ' failed')
  160. for line in ret.splitlines():
  161. p_x2, p_y2, p_z2 = map(float, line.split(';'))
  162. points.append((p_x2 / dest['scale'], p_y2 / dest['scale']))
  163. return points
  164. def projectPoints(points, source, dest):
  165. """Projects a list of points"""
  166. dest_points = []
  167. input = tempfile.NamedTemporaryFile(mode="wt")
  168. for point in points:
  169. input.file.write('%f;%f\n' % \
  170. (point[0] * source['scale'],
  171. point[1] * source['scale']))
  172. input.file.flush()
  173. dest_points = project(input.name, source, dest)
  174. return dest_points
  175. def sideLengths(points, xmetric, ymetric):
  176. """Find the length of sides of a set of points from one to the next"""
  177. ret = []
  178. for i in range(len(points)):
  179. x1, y1 = points[i]
  180. j = i + 1
  181. if j >= len(points):
  182. j = 0
  183. sl_x = (points[j][0] - points[i][0]) * xmetric
  184. sl_y = (points[j][1] - points[i][1]) * ymetric
  185. sl_d = math.sqrt(sl_x * sl_x + sl_y * sl_y)
  186. ret.append(sl_d)
  187. return { 'x' : (ret[1], ret[3]),
  188. 'y' : (ret[0], ret[2]) }
  189. def bboxesIntersect(bbox_1, bbox_2):
  190. """Determine if two bounding boxes intersect"""
  191. bi_a1 = (bbox_1['w'], bbox_1['s'])
  192. bi_a2 = (bbox_1['e'], bbox_1['n'])
  193. bi_b1 = (bbox_2['w'], bbox_2['s'])
  194. bi_b2 = (bbox_2['e'], bbox_2['n'])
  195. cin = [False, False]
  196. for i in (0, 1):
  197. if (bi_a1[i] <= bi_b1[i] and bi_a2[i] >= bi_b2[i]) or \
  198. (bi_a1[i] <= bi_b1[i] and bi_a2[i] >= bi_b2[i]) or \
  199. (bi_a1[i] <= bi_b1[i] and bi_a1[i] >= bi_b2[i]) or \
  200. (bi_a2[i] <= bi_b1[i] and bi_a2[i] >= bi_b2[i]):
  201. cin[i] = True
  202. if cin[0] and cin[1]:
  203. return True
  204. return False
  205. def main():
  206. # Take into account those extra pixels we'll be a addin'
  207. max_cols = int(options['maxcols']) - int(options['overlap'])
  208. max_rows = int(options['maxrows']) - int(options['overlap'])
  209. # destination projection
  210. if not options['destproj']:
  211. dest_proj = grass.read_command('g.proj',
  212. quiet = True,
  213. flags = 'jf').rstrip('\n')
  214. if not dest_proj:
  215. grass.fatal(_('g.proj failed'))
  216. else:
  217. dest_proj = options['destproj']
  218. grass.debug("Getting destination projection -> '%s'" % dest_proj)
  219. # projection scale
  220. if not options['destscale']:
  221. ret = grass.parse_command('g.proj',
  222. quiet = True,
  223. flags = 'j')
  224. if not ret:
  225. grass.fatal(_('g.proj failed'))
  226. dest_scale = ret['+to_meter'].strip()
  227. else:
  228. dest_scale = options['destscale']
  229. grass.debug('Getting destination projection scale -> %s' % dest_scale)
  230. # set up the projections
  231. srs_source = { 'proj' : options['sourceproj'],
  232. 'scale' : float(options['sourcescale']) }
  233. srs_dest = { 'proj' : dest_proj,
  234. 'scale' : float(dest_scale) }
  235. if options['region']:
  236. grass.run_command('g.region',
  237. quiet = True,
  238. region = options['region'])
  239. dest_bbox = grass.region()
  240. grass.debug('Getting destination region')
  241. # project the destination region into the source:
  242. grass.verbose('Projecting destination region into source...')
  243. dest_bbox_points = bboxToPoints(dest_bbox)
  244. dest_bbox_source_points = projectPoints(dest_bbox_points,
  245. source = srs_dest,
  246. dest = srs_source)
  247. source_bbox = pointsToBbox(dest_bbox_source_points)
  248. grass.verbose('Projecting source bounding box into destination...')
  249. source_bbox_points = bboxToPoints(source_bbox)
  250. source_bbox_dest_points = projectPoints(source_bbox_points,
  251. source = srs_source,
  252. dest = srs_dest)
  253. x_metric = 1 / dest_bbox['ewres']
  254. y_metric = 1 / dest_bbox['nsres']
  255. grass.verbose('Computing length of sides of source bounding box...')
  256. source_bbox_dest_lengths = sideLengths(source_bbox_dest_points,
  257. x_metric, y_metric)
  258. # Find the skewedness of the two directions.
  259. # Define it to be greater than one
  260. # In the direction (x or y) in which the world is least skewed (ie north south in lat long)
  261. # Divide the world into strips. These strips are as big as possible contrained by max_
  262. # In the other direction do the same thing.
  263. # Theres some recomputation of the size of the world that's got to come in here somewhere.
  264. # For now, however, we are going to go ahead and request more data than is necessary.
  265. # For small regions far from the critical areas of projections this makes very little difference
  266. # in the amount of data gotten.
  267. # We can make this efficient for big regions or regions near critical points later.
  268. bigger = []
  269. bigger.append(max(source_bbox_dest_lengths['x']))
  270. bigger.append(max(source_bbox_dest_lengths['y']))
  271. maxdim = (max_cols, max_rows)
  272. # Compute the number and size of tiles to use in each direction
  273. # I'm making fairly even sized tiles
  274. # They differer from each other in height and width only by one cell
  275. # I'm going to make the numbers all simpler and add this extra cell to
  276. # every tile.
  277. grass.message(_('Computing tiling...'))
  278. tiles = [-1, -1]
  279. tile_base_size = [-1, -1]
  280. tiles_extra_1 = [-1, -1]
  281. tile_size = [-1, -1]
  282. tileset_size = [-1, -1]
  283. tile_size_overlap = [-1, -1]
  284. for i in range(len(bigger)):
  285. # make these into integers.
  286. # round up
  287. bigger[i] = int(bigger[i] + 1)
  288. tiles[i] = int((bigger[i] / maxdim[i]) + 1)
  289. tile_size[i] = tile_base_size[i] = int(bigger[i] / tiles[i])
  290. tiles_extra_1[i] = int(bigger[i] % tiles[i])
  291. # This is adding the extra pixel (remainder) to all of the tiles:
  292. if tiles_extra_1[i] > 0:
  293. tile_size[i] = tile_base_size[i] + 1
  294. tileset_size[i] = int(tile_size[i] * tiles[i])
  295. # Add overlap to tiles (doesn't effect tileset_size
  296. tile_size_overlap[i] = tile_size[i] + int(options['overlap'])
  297. grass.verbose("There will be %d by %d tiles each %d by %d cells" % \
  298. (tiles[0], tiles[1], tile_size[0], tile_size[1]))
  299. ximax = tiles[0]
  300. yimax = tiles[1]
  301. min_x = source_bbox['w']
  302. min_y = source_bbox['s']
  303. max_x = source_bbox['e']
  304. max_y = source_bbox['n']
  305. span_x = (max_x - min_x)
  306. span_y = (max_y - min_y)
  307. xi = 0
  308. tile_bbox = { 'w' : -1, 's': -1, 'e' : -1, 'n' : -1 }
  309. while xi < ximax:
  310. tile_bbox['w'] = min_x + (xi * tile_size[0] / tileset_size[0]) * span_x
  311. tile_bbox['e'] = min_x + ((xi + 1) * tile_size_overlap[0] / tileset_size[0]) * span_x
  312. yi = 0
  313. while yi < yimax:
  314. tile_bbox['s'] = min_y + (yi * tile_size[1] / tileset_size[1]) * span_y
  315. tile_bbox['n'] = min_y + ((yi + 1) * tile_size_overlap[1] / tileset_size[1]) * span_y
  316. tile_bbox_points = bboxToPoints(tile_bbox)
  317. tile_dest_bbox_points = projectPoints(tile_bbox_points,
  318. source = srs_source,
  319. dest = srs_dest)
  320. tile_dest_bbox = pointsToBbox(tile_dest_bbox_points)
  321. if bboxesIntersect(tile_dest_bbox, dest_bbox):
  322. if flags['w']:
  323. print "bbox=%s,%s,%s,%s&width=%s&height=%s" % \
  324. (tile_bbox['w'], tile_bbox['s'], tile_bbox['e'], tile_bbox['n'],
  325. tile_size_overlap[0], tile_size_overlap[1])
  326. elif flags['g']:
  327. print "w=%s;s=%s;e=%s;n=%s;cols=%s;rows=%s" % \
  328. (tile_bbox['w'], tile_bbox['s'], tile_bbox['e'], tile_bbox['n'],
  329. tile_size_overlap[0], tile_size_overlap[1])
  330. else:
  331. fs = options['fs']
  332. print "%s%s%s%s%s%s%s%s%s%s%s" % \
  333. (tile_bbox['w'], fs, tile_bbox['s'], fs, tile_bbox['e'], fs, tile_bbox['n'], fs,
  334. tile_size_overlap[0], fs, tile_size_overlap[1])
  335. yi += 1
  336. xi += 1
  337. if __name__ == "__main__":
  338. cs2cs = 'cs2cs'
  339. options, flags = grass.parser()
  340. sys.exit(main())