1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- <H2>DESCRIPTION</H2>
- <EM>i.evapo.time_integration</EM> integrates ETa in time following a reference ET (typically) from a set of meteorological stations dataset.
- Inputs:
- - ETa images
- - ETa images DOY (Day of Year)
- - ETo images
- - ETo DOYmin as a single value
- Method:
- 1 - each ETa pixel is divided by the same day ETo and become ETrF
- 2 - each ETrF pixel is multiplied by the ETo sum for the representative days
- 3 - Sum all n temporal [ETrF*ETo_sum] pixels to make a summed(ET) in [DOYmin;DOYmax]
- representative days calculation:
- let assume i belongs to range [DOYmin;DOYmax]
- DOYbeforeETa[i] = ( DOYofETa[i] - DOYofETa[i-1] ) / 2
- DOYafterETa[i] = ( DOYofETa[i+1] - DOYofETa[i] ) / 2
- <H2>NOTES</H2>
- ETo images preparation:
- If you only have one meteorological station data, the easiest way is:
- n=0
- for ETo_val in Eto[1] Eto[2] ...
- do
- r.mapcalc "eto$n = $ETo_val"
- `expr n = n + 1'
- done
- with Eto[1], Eto[2], etc being a simple copy and paste from your data file of all ETo values separated by an empty space from each other.
- If you have several meteorological stations data, then you need to grid them, Thiessen polygons or interpolation for each day.
- For multi-year calculations, just continue incrementing DOY values above 366, it will continue working, up to maximum input of 400 satellite images.
- <H2>TODO</H2>
- <H2>SEE ALSO</H2>
- <em>
- <A HREF="i.eb.eta.html">i.eb.eta</A><br>
- <A HREF="i.evapo.potrad.html">i.evapo.potrad</A><br>
- <A HREF="i.evapo.SENAY.html">i.evapo.SENAY</A><br>
- <A HREF="r.surf.idw.html">r.surf.idw</A><br>
- <A HREF="r.surf.idw2.html">r.surf.idw2</A><br>
- <A HREF="r.bilinear.html">r.bilinear</A><br>
- </em>
- <H2>AUTHORS</H2>
- Yann Chemin, International Rice Research Institute, The Philippines<BR>
- <p>
- <i>Last changed: $Date: 2008/08/25 06:17:43 $</i>
|