123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281 |
- /**
- * \file transform.c
- *
- * \brief This file contains routines which perform (affine?)
- * transformations from one coordinate system into another.
- *
- * The second system may be translated, stretched, and rotated relative
- * to the first. The input system is system <em>a</em> and the output
- * system is <em>b</em>.
- *
- * This program is free software under the GNU General Public License
- * (>=v2). Read the file COPYING that comes with GRASS for details.
- *
- * \author GRASS GIS Development Team
- *
- * \date 1987-2007
- */
- /****************************************************************
- note: uses sqrt() from math library
- *****************************************************************
- Points from one system may be converted into the second by
- use of one of the two equation routines.
- transform_a_into_b (ax,ay,bx,by)
- double ax,ay; input point from system a
- double *bx,*by; resultant point in system b
- transform_b_into_a (bx,by,ax,ay)
- double bx,by; input point from system b
- double *ax,*ay; resultant point in system a
- *****************************************************************
- Residual analysis on the equation can be run to test how well
- the equations work. Either test how well b is predicted by a
- or vice versa.
- residuals_a_predicts_b (ax,ay,bx,by,use,n,residuals,rms)
- residuals_b_predicts_a (ax,ay,bx,by,use,n,residuals,rms)
- double ax[], ay[]; coordinate from system a
- double bx[], by[]; coordinate from system b
- char use[]; use point flags
- int n; number of points in ax,ay,bx,by
- double residual[] residual error for each point
- double *rms; overall root mean square error
- ****************************************************************/
- #include <stdio.h>
- #include <math.h>
- #include <grass/transform.h>
- /* the coefficients */
- static double A0, A1, A2, A3, A4, A5;
- static double B0, B1, B2, B3, B4, B5;
- /* function prototypes */
- static int resid(double *, double *, double *, double *, int *, int, double *,
- double *, int);
- /**
- * \fn int compute_transformation_coef (double ax[], double ay[], double bx[], double by[], char *use, int n)
- *
- * \brief The first step is to compute coefficients for a set of equations
- * which are then used to convert from the one system to the other.
- *
- * A set of x,y points from both systems is input into the equation
- * generator which determines the equation coefficients which most
- * nearly represent the original points. These coefficients are kept
- * in a static variables internal to this file.
- *
- * NOTE: use[i] must be true for ax[i],ay[i],bx[i],by[i] to be used
- * in the equation. Also, the total number of used points must be
- * 4 or larger.
- *
- * \param[in] ax coordinate from system a
- * \param[in] ay coordinate from system a
- * \param[in] bx coordinate from system b
- * \param[in] by coordinate from system b
- * \param[in] use use point flags
- * \param[in] n number of points in ax, ay, bx, by
- * \return int 1 if successful
- * \return int -1 if could not solve equation. Points probably colinear.
- * \return int -2 if less than 4 points used
- */
- int compute_transformation_coef(double ax[], double ay[], double bx[],
- double by[], int *use, int n)
- {
- int i;
- int j;
- int count;
- double aa[3];
- double aar[3];
- double bb[3];
- double bbr[3];
- double cc[3][3];
- double x;
- count = 0;
- for (i = 0; i < n; i++)
- if (use[i])
- count++;
- if (count < 4)
- return -2; /* must have at least 4 points */
- for (i = 0; i < 3; i++) {
- aa[i] = bb[i] = 0.0;
- for (j = 0; j < 3; j++)
- cc[i][j] = 0.0;
- }
- for (i = 0; i < n; i++) {
- if (!use[i])
- continue; /* skip this point */
- cc[0][0] += 1;
- cc[0][1] += bx[i];
- cc[0][2] += by[i];
- cc[1][1] += bx[i] * bx[i];
- cc[1][2] += bx[i] * by[i];
- cc[2][2] += by[i] * by[i];
- aa[0] += ay[i];
- aa[1] += ay[i] * bx[i];
- aa[2] += ay[i] * by[i];
- bb[0] += ax[i];
- bb[1] += ax[i] * bx[i];
- bb[2] += ax[i] * by[i];
- }
- cc[1][0] = cc[0][1];
- cc[2][0] = cc[0][2];
- cc[2][1] = cc[1][2];
- /* aa and bb are solved */
- if (inverse(cc) < 0)
- return (-1);
- if (m_mult(cc, aa, aar) < 0 || m_mult(cc, bb, bbr) < 0)
- return (-1);
- /* the equation coefficients */
- B0 = aar[0];
- B1 = aar[1];
- B2 = aar[2];
- B3 = bbr[0];
- B4 = bbr[1];
- B5 = bbr[2];
- /* the inverse equation */
- x = B2 * B4 - B1 * B5;
- if (!x)
- return (-1);
- A0 = (B1 * B3 - B0 * B4) / x;
- A1 = -B1 / x;
- A2 = B4 / x;
- A3 = (B0 * B5 - B2 * B3) / x;
- A4 = B2 / x;
- A5 = -B5 / x;
- return 1;
- }
- int transform_a_into_b(double ax, double ay, double *bx, double *by)
- {
- *by = A0 + A1 * ax + A2 * ay;
- *bx = A3 + A4 * ax + A5 * ay;
- return 0;
- }
- int transform_b_into_a(double bx, double by, double *ax, double *ay)
- {
- *ay = B0 + B1 * bx + B2 * by;
- *ax = B3 + B4 * bx + B5 * by;
- return 0;
- }
- /**************************************************************
- These routines are internal to this source code
- solve (a, b)
- double a[3][3]
- double b[3]
- equation solver used by compute_transformation_coef()
- **************************************************************/
- /* #define abs(xx) (xx >= 0 ? xx : -xx) */
- /* #define N 3 */
- int residuals_a_predicts_b(double ax[], double ay[], double bx[], double by[],
- int use[], int n, double residuals[], double *rms)
- {
- resid(ax, ay, bx, by, use, n, residuals, rms, 1);
- return 0;
- }
- int residuals_b_predicts_a(double ax[], double ay[], double bx[], double by[],
- int use[], int n, double residuals[], double *rms)
- {
- resid(ax, ay, bx, by, use, n, residuals, rms, 0);
- return 0;
- }
- /**
- * \fn int print_transform_matrix (void)
- *
- * \brief Prints matrix to stdout in human readable format.
- *
- * \return int 1
- */
- int print_transform_matrix(void)
- {
- fprintf(stdout, "\nTransformation Matrix\n");
- fprintf(stdout, "| xoff a b |\n");
- fprintf(stdout, "| yoff d e |\n");
- fprintf(stdout, "-------------------------------------------\n");
- fprintf(stdout, "%f %f %f \n", -B3, B2, -B5);
- fprintf(stdout, "%f %f %f \n", -B0, -B1, B4);
- fprintf(stdout, "-------------------------------------------\n");
- return 1;
- }
- static int resid(double ax[], double ay[], double bx[], double by[],
- int use[], int n, double residuals[], double *rms, int atob)
- {
- double x, y;
- int i;
- int count;
- double sum;
- double delta;
- double dx, dy;
- count = 0;
- sum = 0.0;
- for (i = 0; i < n; i++) {
- if (!use[i])
- continue;
- count++;
- if (atob) {
- transform_a_into_b(ax[i], ay[i], &x, &y);
- dx = x - bx[i];
- dy = y - by[i];
- }
- else {
- transform_b_into_a(bx[i], by[i], &x, &y);
- dx = x - ax[i];
- dy = y - ay[i];
- }
- delta = dx * dx + dy * dy;
- residuals[i] = sqrt(delta);
- sum += delta;
- }
- *rms = sqrt(sum / count);
- return 0;
- }
|