v.krige.html 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190
  1. <h2>DESCRIPTION</h2>
  2. <em>v.krige</em> allows to perform kriging operations in GRASS
  3. environment, using R software functions in background.
  4. <h2>NOTES</h2>
  5. <em>v.krige</em> is just a front-end to R. The options and parameters
  6. are the same offered by packages <i>automap</i> and <i>gstat</i>.
  7. <p>Kriging, like other interpolation methods, is fully dependent on input
  8. data features. Exploratory analysis of data is encouraged to find out
  9. outliers, trends, anisotropies, uneven distributions and consequently
  10. choose the kriging algorithm that will give the most acceptable
  11. result. Good knowledge of the dataset is more valuable than hundreds
  12. of parameters or powerful hardware. See Isaaks and Srivastava's book,
  13. exhaustive and clear even if a bit outdated.
  14. <h3>Dependencies</h3>
  15. <dl>
  16. <dt><b>R software >= 2.x</b></dt>
  17. <dd></dd>
  18. <dt><b>rpy2</b></dt>
  19. <dd>Python binding to R. Note! <tt>rpy</tt> version 1 is not supported.</dd>
  20. <dt><b>R packages automap, gstat, spgrass6 and rgeos. </b></dt>
  21. <dd>automap is optional (provides automatic variogram fit).</dd>
  22. </dl>
  23. Install the packages via R command line (or your preferred GUI):
  24. <div class="code"><pre>
  25. install.packages("rgeos", dep=T)
  26. install.packages("gstat", dep=T)
  27. install.packages("spgrass6", dep=T)
  28. install.packages("automap", dep=T)
  29. </pre></div>
  30. <h4>Notes for Debian GNU/Linux</h4>
  31. Install the dependiencies. <b>Attention! python-rpy IS NOT
  32. SUITABLE.</b>:
  33. <div class="code"><pre>
  34. aptitude install R python-rpy2
  35. </pre></div>
  36. To install R packages, use either R's functions listed above (as root or as user),
  37. either the Debian packages [5], add to repositories' list
  38. for 32bit or 64bit (pick up the suitable line):
  39. <div class="code"><pre>
  40. deb <a href="http://debian.cran.r-project.org/cran2deb/debian-i386">http://debian.cran.r-project.org/cran2deb/debian-i386</a> testing/
  41. deb <a href="http://debian.cran.r-project.org/cran2deb/debian-amd64">http://debian.cran.r-project.org/cran2deb/debian-amd64</a> testing/
  42. </pre></div>
  43. and get the packages via aptitude:
  44. <div class="code"><pre>
  45. aptitude install r-cran-gstat r-cran-spgrass6
  46. </pre></div>
  47. <h4>Notes for Windows</h4>
  48. Compile GRASS following this
  49. <a href="http://trac.osgeo.org/grass/wiki/CompileOnWindows">guide</a>.
  50. You could also use Linux in a virtual machine. Or install Linux in a
  51. separate partition of the HD. This is not as painful as it appears,
  52. there are lots of guides over the Internet to help you.
  53. <h3>Computation time issues</h3>
  54. Please note that kriging calculation is slown down both by high number
  55. of input data points and/or high region resolution, even if they both
  56. contribute to a better output.
  57. <h2>EXAMPLES</h2>
  58. Kriging example based on elevation map (Spearfish data set).
  59. <p><b>Part 1: random sampling</b> of 2000 vector points from known
  60. elevation map. Each point will receive the elevation value from the
  61. elevation raster, as if it came from a point survey.
  62. <div class="code"><pre>
  63. g.region rast=elevation.10m -p
  64. v.random output=rand2k_elev n=2000
  65. v.db.addtable map=rand2k_elev column="elevation double precision"
  66. v.what.rast vect=rand2k_elev rast=elevation.10m column=elevation
  67. </pre></div>
  68. <b>Part 2: remove points lacking elevation attributes</b>. Points
  69. sampled at the border of the elevation map didn't receive any
  70. value. v.krige has no preferred action to cope with no data values, so
  71. the user must check for them and decide what to do (remove points,
  72. fill with the value of the nearest point, fill with the global/local
  73. mean...). In the following line of code, points with no data are
  74. removed from the map.
  75. <div class="code"><pre>
  76. v.extract rand2k_elev output=rand2k_elev_filt where="elevation not NULL"
  77. </pre></div>
  78. Check the result of previous line ("number of NULL attributes" must be
  79. 0):
  80. <div class="code"><pre>
  81. v.univar rand2k_elev_filt type=point column=elevation
  82. </pre></div>
  83. <b>Part 3: reconstruct DEM through kriging</b>. Using automatic
  84. variogram fit is the simplest way to run v.krige from CLI (note:
  85. requires R's automap package). Output map name is optional, the
  86. modules creates it automatically appending "_kriging" the the input
  87. map name and also checks for overwrite. If output_var is specified,
  88. the variance map is also created. Automatic variogram fit is provided
  89. by R package automap, the variogram models tested by the fitting
  90. functions are: exponential, spherical, Gaussian, Matern, M.Stein's
  91. parametrisation. A wider range of models is available from gstat
  92. package and can be tested on the GUI via the variogram plotting. If
  93. model is specified in the CLI, also sill, nugget and range values are
  94. to be provided, otherwise an error is raised (see second example of
  95. v.krige command).
  96. <div class="code"><pre>
  97. v.krige input=rand2k_elev_filt column=elevation output=rand2k_elev_kriging \
  98. output_var=rand2k_elev_kriging_var
  99. v.krige input=rand2k_elev_filt column=elevation output=rand2k_elev_kriging \
  100. output_var=rand2k_elev_kriging_var model=Lin sill=2500 nugget=0 range=1000 \
  101. --overwrite
  102. </pre></div>
  103. Or run wxGUI, to interactively fit the variogram and explore options:
  104. <div class="code"><pre>
  105. v.krige
  106. </pre></div>
  107. <b>Calculate prediction error</b>:
  108. <div class="code"><pre>
  109. r.mapcalc "rand2k_elev_kriging_pe = sqrt(rand2k_elev_kriging_var)"
  110. r.univar elevation.10m
  111. r.univar rand2k_elev_kriging
  112. r.univar rand2k_elev_kriging_pe
  113. </pre></div>
  114. The results show high errors, as the kriging techniques (ordinary and
  115. block kriging) are unable to handle a dataset with a trend, like the
  116. one used in this example: elevation is higher in the southwest corner
  117. and lower on northeast corner. Universal kriging can give far better
  118. results in these cases as it can handle the trend. It is available in
  119. R package gstat and will be part of a future v.krige release.
  120. <h2>SEE ALSO</h2>
  121. R package <a href="http://cran.r-project.org/web/packages/gstat/index.html">gstat</a>,
  122. mantained by Edzer J. Pebesma and others
  123. <br>
  124. R
  125. package <a href="http://cran.r-project.org/web/packages/spgrass6/index.html">spgrass6</a>,
  126. mantained by Roger Bivand
  127. <br>
  128. The <a href="http://grass.osgeo.org/statsgrass/grass6_r_install.html">Short
  129. Introduction to Geostatistical and Spatial Data Analysis with GRASS 6
  130. and R statistical data language</a> at the GRASS website. (includes
  131. installation tips)
  132. <br><br>
  133. v.krige's <a href="http://grass.osgeo.org/wiki/V.krige_GSoC_2009">wiki page</a>
  134. <h2>REFERENCES</h2>
  135. Isaaks and Srivastava, 1989: "An Introduction to Applied Geostatistics"
  136. (ISBN 0-19-505013-4)
  137. <h2>AUTHOR</h2>
  138. Anne Ghisla, Google Summer of Code 2009
  139. <p><i>Last changed: $Date$</i>