v.kernel.html 2.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475
  1. <h2>DESCRIPTION</h2>
  2. <em>v.kernel</em> generates a raster density map from vector points
  3. data using a moving
  4. kernel. Available <a href="http://en.wikipedia.org/wiki/Kernel_(statistics)#Kernel_functions_in_common_use">kernel
  5. density functions</a> are <em>uniform, triangular, epanechnikov,
  6. quartic, triweight, gaussian, cosine</em>, default
  7. is <em>gaussian</em>.
  8. <p>The module can also generate a vector density map on a vector network.
  9. Conventional kernel functions produce biased estimates by overestimating
  10. the densities around network nodes, whereas the equal split method of
  11. Okabe et al. (2009) produces unbiased density estimates. The equal split
  12. method uses the kernel function selected with the <b>kernel</b> option
  13. and can be enabled with <b>node=split</b>.
  14. <h2>NOTES</h2>
  15. The <b>multiplier</b> option is needed to overcome the limitation that
  16. the resulting density in case of a vector map output is stored as category
  17. (integer). The density result stored as category may be multiplied by this number.
  18. <p>
  19. For the <em>gaussian</em> kernel, standard deviation for the
  20. <a href="http://en.wikipedia.org/wiki/Kernel_(statistics)#Kernel_functions_in_common_use">gaussian function</a>
  21. is set to 1/4 of the radius.
  22. <p>
  23. With the <b>-o</b> flag (experimental) the command tries to calculate an
  24. optimal radius. The value of <em>radius</em> is taken
  25. as maximum value. The radius is calculated based on the gaussian function,
  26. using ALL points, not just those in the current region.
  27. <h2>EXAMPLES</h2>
  28. Compute density of points (using vector map of schools from North Carolina sample dataset):
  29. <div class="code"><pre>
  30. g.region region=wake_30m
  31. v.kernel input=schools_wake output=schools_density radius=5000 multiplier=1000000
  32. r.colors map=schools_density color=bcyr
  33. </pre></div>
  34. <center>
  35. <img src="v_kernel.png" alt="Density of schools" border=0><br>
  36. School density
  37. </center>
  38. <h2>KNOWN ISSUES</h2>
  39. The module only considers the presence of points, but not
  40. (yet) any attribute values.
  41. <h2>REFERENCES</h2>
  42. <ul>
  43. <li>Okabe, A., Satoh, T., Sugihara, K. (2009). <i>A kernel density estimation
  44. method for networks, its computational method and a GIS-based tool</i>.
  45. <b>International Journal of Geographical Information Science</b>, Vol 23(1),
  46. pp. 7-32.<br>
  47. DOI: <a href="http://dx.doi.org/10.1080/13658810802475491">10.1080/13658810802475491</a>
  48. </ul>
  49. <h2>SEE ALSO</h2>
  50. <em><a href="v.surf.rst.html">v.surf.rst</a></em>
  51. <p>
  52. Overview: <a href="https://grasswiki.osgeo.org/wiki/Interpolation">Interpolation and Resampling</a> in GRASS GIS
  53. <h2>AUTHORS</h2>
  54. Stefano Menegon, <a href="http://mpa.itc.it/">ITC-irst</a>, Trento, Italy<br>
  55. Radim Blazek (additional kernel density functions and network part)
  56. <!--
  57. <p>
  58. <i>Last changed: $Date$</i>
  59. -->