imageryintro.html 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217
  1. <!-- meta page description: Image processing in GRASS GIS -->
  2. <!-- meta page index: imagery -->
  3. <h3>General introduction</h3>
  4. <b>Digital numbers and physical values (reflection/radiance-at-sensor):</b>
  5. <p>
  6. Satellite imagery is commonly stored in Digital Numbers (DN) for
  7. minimizing the storage volume, i.e. the originally sampled analog
  8. physical value (color, temperature, etc) is stored a discrete
  9. representation in 8-16 bits. For example, Landsat data are stored in
  10. 8bit values (i.e., ranging from 0 to 255); other satellite data may
  11. be stored in 10 or 16 bits. Having data stored in DN, it implies
  12. that these data are not yet the observed ground reality. Such data
  13. are called "at-satellite", for example the amount of energy sensed
  14. by the sensor of the satellite platform is encoded in 8 or more
  15. bits. This energy is called radiance-at-sensor. To obtain physical
  16. values from DNs, satellite image providers use a linear transform
  17. equation <tt>(y = a * x + b)</tt> to encode the radiance-at-sensor
  18. in 8 to 16 bits. DNs can be turned back into physical values by
  19. applying the reverse formula <tt>(x = (y - b) / a)</tt>.
  20. <p>
  21. The GRASS GIS module <a href="i.landsat.toar.html">i.landsat.toar</a>
  22. easily transforms Landsat DN to radiance-at-sensor. The equivalent
  23. module for ASTER data is <a href="i.aster.toar.html">i.aster.toar</a>.
  24. For other satellites, <a href="r.mapcalc.html">r.mapcalc</a> can
  25. be employed.
  26. <p>
  27. <b>Reflection/radiance-at-sensor and surface reflectance</b>
  28. <p>
  29. When radiance-at-sensor has been obtained, still the atmosphere
  30. influences the signal as recorded at the sensor. This atmospheric
  31. interaction with the sun energy reflected back into space by
  32. ground/vegetation/soil needs to be corrected. There are two ways to
  33. apply atmospheric correction for satellite imagery. The simple way
  34. for Landsat is with <a href="i.landsat.toar.html">i.landsat.toar</a>,
  35. using the DOS correction method. The more accurate way is using
  36. <a href="i.atcorr.html">i.atcorr</a> (which works for many satellite
  37. sensors). The atmospherically corrected sensor data represent
  38. surface <a href="http://en.wikipedia.org/wiki/reflectance">reflectance</a>,
  39. which ranges theoretically from 0% to 100%. Note that this level of
  40. data correction is the proper level of correction to calculate
  41. vegetation indices.
  42. <p>
  43. In GRASS GIS, image data are identical to <a href="rasterintro.html">raster data</a>.
  44. However, a couple of commands are explicitly dedicated to image
  45. processing. The geographic boundaries of the raster/imagery file are
  46. described by the north, south, east, and west fields. These values
  47. describe the lines which bound the map at its edges. These lines do
  48. NOT pass through the center of the grid cells at the edge of the
  49. map, but along the edge of the map itself.
  50. <p>
  51. As a general rule in GRASS:
  52. <ol>
  53. <li> Raster/imagery output maps have their bounds and resolution equal
  54. to those of the current region.
  55. <li> Raster/imagery input maps are automatically cropped/padded and
  56. rescaled (using nearest-neighbor resampling) to match the current
  57. region.
  58. </ol>
  59. <h3>Imagery import</h3>
  60. The module <a href="r.in.gdal.html">r.in.gdal</a> offers a common
  61. interface for many different raster and satellite image
  62. formats. Additionally, it also offers options such as on-the-fly
  63. location creation or extension of the default region to match the
  64. extent of the imported raster map. For special cases, other import
  65. modules are available. Always the full map is imported. Imagery data
  66. can be group (e.g. channel-wise) with <a href="i.group.html">i.group</a>.
  67. <p>
  68. For importing scanned maps, the user will need to create a
  69. x,y-location, scan the map in the desired resolution and save it into
  70. an appropriate raster format (e.g. tiff, jpeg, png, pbm) and then use
  71. <a href="r.in.gdal.html">r.in.gdal</a> to import it. Based on
  72. reference points the scanned map can be rectified to obtain geocoded
  73. data.
  74. <h3>Image processing operations</h3>
  75. GRASS raster/imagery map processing is always performed in the current
  76. region settings (see <a href="g.region.html">g.region</a>), i.e. the
  77. current region extent and current raster resolution is used. If the
  78. resolution differs from that of the input raster map(s), on-the-fly
  79. resampling is performed (nearest neighbor resampling). If this is not
  80. desired, the input map(s) has/have to be resampled beforehand with one
  81. of the dedicated modules.
  82. <h3>Geocoding of imagery data</h3>
  83. GRASS is able to geocode raster and image data of various types:
  84. <ul>
  85. <li>unreferenced scanned maps by defining four corner points
  86. (<a href="i.group.html">i.group</a>, <a href="i.target.html">i.target</a>,
  87. <a href="i.points.html">i.points</a>, <a href="i.rectify.html">i.rectify</a>)</li>
  88. <li>unreferenced satellite data from optical and Radar sensors by
  89. defining a certain number of ground control points
  90. (<a href="i.group.html">i.group</a>, <a href="i.target.html">i.target</a>,
  91. <a href="i.points.html">i.points</a>, <a href="i.rectify.html">i.rectify</a>)</li>
  92. <li>interactive graphical <a href="wxGUI.gcp.html">Ground Control Point (GCP) manager</a></li>
  93. <!--
  94. <li>orthophoto generation based on DEM: <a href="i.ortho.photo.html">i.ortho.photo</a></li>
  95. <li>digital handheld camera geocoding: modified procedure for
  96. <a href="i.ortho.photo.html">i.ortho.photo</a></li>
  97. -->
  98. </ul>
  99. <h3>Visualizing (true) color composites</h3>
  100. To quickly combine the first three channels to a near natural color
  101. image, the GRASS command <a href="d.rgb.html">d.rgb</a> can be used or
  102. the graphical GIS manager (<a href="wxGUI.html">wxGUI</a>). It assigns
  103. each channel to a color which is then mixed while displayed. With a
  104. bit more work of tuning the grey scales of the channels, nearly
  105. perfect colors can be achieved. Channel histograms can be shown with
  106. <a href="d.histogram.html">d.histogram</a>.
  107. <h3>Calculation of vegetation indices</h3>
  108. An example for indices derived from multispectral data is the NDVI
  109. (normalized difference vegetation index). To study the vegetation
  110. status with NDVI, the Red and the Near Infrared channels (NIR) are
  111. taken as used as input for simple map algebra in the GRASS command
  112. <a href="r.mapcalc.html">r.mapcalc</a>
  113. (<tt>ndvi = 1.0 * (nir - red)/(nir + red)</tt>). With
  114. <a href="r.colors.html">r.colors</a> an optimized "ndvi" color table
  115. can be assigned afterward. Also other vegetation indices can be
  116. generated likewise.
  117. <h3>Calibration of thermal channel</h3>
  118. The encoded digital numbers of a thermal infrared channel can be
  119. transformed to degree Celsius (or other temperature units) which
  120. represent the temperature of the observed land surface. This requires
  121. a few algebraic steps with <a href="r.mapcalc.html">r.mapcalc</a>
  122. which are outlined in the literature to apply gain and bias values
  123. from the image metadata.
  124. <h3>Image classification</h3>
  125. Single and multispectral data can be classified to user defined land
  126. use/land cover classes. In case of a single channel, segmentation will
  127. be used.
  128. GRASS supports the following methods:
  129. <ul>
  130. <li> Radiometric classification:
  131. <ul>
  132. <li> Unsupervised classification (<a href="i.cluster.html">i.cluster</a>,
  133. <a href="i.maxlik.html">i.maxlik</a>) using the Maximum Likelihood
  134. classification method</li>
  135. <li> Supervised classification (<a href="i.gensig.html">i.gensig</a>
  136. or <a href="g.gui.iclass.html">g.gui.iclass</a>, <a href="i.maxlik.html">i.maxlik</a>)
  137. using the Maximum Likelihood classification method</li>
  138. </ul>
  139. <li> Combined radiometric/geometric (segmentation based) classification:
  140. <ul>
  141. <li> Supervised classification (<a href="i.gensigset.html">i.gensigset</a>,
  142. <a href="i.smap.html">i.smap</a>)
  143. </ul>
  144. <li> Object-oriented classification:
  145. <ul>
  146. <li> Unsupervised classification (segmentation based:
  147. <a href="i.segment.html">i.segment</a>)
  148. </ul>
  149. </ul>
  150. Kappa statistic can be calculated to validate the results
  151. (<a href="r.kappa.html">r.kappa</a>). Covariance/correlation matrices can be
  152. calculated with <a href="r.covar.html">r.covar</a>.
  153. <h3>Image fusion</h3>
  154. In case of using multispectral data, improvements of the resolution
  155. can be gained by merging the panchromatic channel with color
  156. channels. GRASS provides the HIS (<a href="i.rgb.his.html">i.rgb.his</a>,
  157. <a href="i.his.rgb.html">i.his.rgb</a>) and the Brovey and PCA transform
  158. (<a href="i.pansharpen.html">i.pansharpen</a>) methods.
  159. <h3>Radiometric corrections</h3>
  160. Atmospheric effects can be removed with <a href="i.atcorr.html">i.atcorr</a>.
  161. Correction for topographic/terrain effects is offered in <a href="i.topo.corr.html">i.topo.corr</a>.
  162. Clouds in LANDSAT data can be identified and removed with
  163. <a href="i.landsat.acca.html">i.landsat.acca</a>.
  164. Calibrated digital numbers of LANDSAT and ASTER imagery may be converted to
  165. top-of-atmosphere radiance or reflectance and temperature (<a href="i.aster.toar.html">i.aster.toar</a>,
  166. <a href="i.landsat.toar.html">i.landsat.toar</a>).
  167. <h3>Time series processing</h3>
  168. GRASS also offers support for time series processing (<a
  169. href="r.series.html">r.series</a>). Statistics can be derived from a
  170. set of coregistered input maps such as multitemporal satellite
  171. data. The common univariate statistics and also linear regression can
  172. be calculated.
  173. <h3>See also</h3>
  174. <ul>
  175. <li> GRASS GIS Wiki page: <a href="http://grasswiki.osgeo.org/wiki/Image_processing">Image processing</a></li>
  176. <li>The GRASS 4
  177. <em><a href="http://grass.osgeo.org/gdp/imagery/grass4_image_processing.pdf">Image
  178. Processing manual</a></em></li>
  179. <li><a href="rasterintro.html">Introduction into raster data processing</a></li>
  180. <li><a href="raster3dintro.html">Introduction into 3D raster data (voxel) processing</a></li>
  181. <li><a href="vectorintro.html">Introduction into vector data processing</a></li>
  182. <li><a href="databaseintro.html">Database management</a></li>
  183. <li><a href="projectionintro.html">Projections and spatial transformations</a></li>
  184. </ul>