123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- <h2>DESCRIPTION</h2>
- <b><em>r.topmodel</em></b> simulates TOPMODEL which is a physically based
- hydrologic model.
- <h3>Selected Parameters:</h3>
- <dl>
- <dt><b>parameters</b></dt>
- <dd>
- This file contains TOPMODEL parameters that describe the study area. Any lines
- starting with a # sign or empty lines are ignored.
- <div class="code"><pre>
- # Subcatchment name
- Subcatchment 1
- ################################################################################
- # A [m^2]: Total subcatchment area
- 3.31697E+07
- ################################################################################
- # qs0 [m/h]: Initial subsurface flow per unit area
- # "The first streamflow input is assumed to represent
- # only the subsurface flow contribution in the watershed."
- # - Liaw (1988)
- # lnTe [ln(m^2/h)]: Areal average of ln(T0) = ln(Te)
- # m [m]: Scaling parameter
- # Sr0 [m]: Initial root zone storage deficit
- # Srmax [m]: Maximum root zone storage deficit
- # td [h]: Unsaturated zone time delay per unit storage deficit
- # if greater than 0.
- # OR
- # -alpha: Effective vertical hydraulic gradient if not greater than 0.
- # For example, -10 means alpha = 10.
- # vch [m/h]: Main channel routing velocity
- # vr [m/h]: Internal subcatchment routing velocity
- # qs0 lnTe m Sr0 Srmax td/alpha vch vr
- 0.000075 4. 0.0125 0.0025 0.041 60. 20000. 10000.
- ################################################################################
- # infex: Calculate infiltration excess if not zero (integer)
- # K0 [m/h]: Surface hydraulic conductivity
- # psi [m]: Wetting front suction
- # dtheta: Water content change across the wetting front
- # infex K psi dtheta
- 0 2. 0.1 0.1
- ################################################################################
- # d [m]: Distance from catchment
- # The first value should be the mainstream distance from
- # the subcatchment outlet to the catchment outlet.
- # Ad_r: Cumulative area ratio of subcatchment (0.0 to 1.0)
- # The first and last values should be 0 and 1, respectively.
- # d Ad_r
- 0 0.0
- 1000 0.2
- 2000 0.4
- 3000 0.6
- 4000 0.8
- 5000 1.0
- </pre></div>
- </dd>
- <dt><b>input</b><dt>
- <dd>
- This file contains observed weather data.
- <div class="code"><pre>
- # ntimesteps: Number of time steps
- # dt [h]: Time increment per time step
- # ntimesteps dt
- 365 24
- ################################################################################
- # R [m/dt]: Rainfall
- # Ep [m/dt]: Potential evapotranspiration
- # R Ep
- 0.000033 0.000000
- 0.000053 0.011938
- 0.004821 0.000000
- .
- .
- .
- </pre></div>
- </dd>
- <dt><b>obsflow</b></dt>
- <dd>
- Compare simulated flows with observed flows and calculate the model
- efficiency. This file contains observed flow data and the number of records
- should match the number of time steps (ntimesteps in the input file).
- <div class="code"><pre>
- # Qobs [m^3/dt]: Observed flow per time step
- 2568918.24
- 1668573.562
- 1039800.24
- .
- .
- .
- </pre></div>
- </dd>
- <dt><b>timestep</b></dt>
- <dd>
- If a time step is specified, output will be generated for the specific time
- step in addition to the summary and total flows at the outlet. This parameter
- can be combined with topidxclass to specify a time step and topographic index
- class at the same time. If no topidxclass is given, output will be generated
- for all the topographic index classes.
- </dd>
- <dt><b>topidxclass</b></dt>
- <dd>
- If a topographic index class is specified, output will be generated for the
- given topographic index class. This parameter can be combined with timestep. If
- no timestep is given, output will be generated for all the time steps.
- </dd>
- <dt><b>topidx</b>, <b>ntopidxclasses</b>, <b>outtopidxstats</b></dt>
- <dd>
- The <b>topidx</b> map can optionally be used for creating a new topographic
- index statistics file. This map has to be already clipped to the catchment
- boundary. The entire range of topographic index values will be divided into
- <b>ntopidxclasses</b> and the number of cells in each class will be reported in
- the <b>outtopidxstats</b> file using the following command:
- <div class="code"><pre>
- r.stats -Anc input=[topidx] output=[outtopidxstats] nsteps=[ntopidxclasses]
- </pre></div>
- These three parameters can be omitted unless a new topidxstats file needs to be
- created.
- </dd>
- </dl>
- <h2>REFERENCES</h2>
- Cho, H., 2000. GIS Hydrological Modeling System by Using Programming Interface
- of GRASS. Master's Thesis, Department of Civil Engineering, Kyungpook National
- University, Korea.
- <p>
- Beven K., R. Lamb, P. Quinn, R. Romanowicz, and J. Freer, 1995. TOPMODEL, in
- V.P. Singh (Ed.). Computer Models of Watershed Hydrology. Water Resources
- Publications.
- <p>
- Liaw, S.C., 1988. Streamflow Simulation Using a Physically Based Hydrologic
- Model in Humid Forested Watersheds. Dissertation, Colorado State University,
- CO. p163.
- <h2>SEE ALSO</h2>
- <em>
- <a href="r.fill.dir.html">r.fill.dir</a>,
- <a href="r.mapcalc.html">r.mapcalc</a>,
- <a href="r.topidx.html">r.topidx</a>
- </em>
- <br>
- <a href="http://idea.isnew.info/grass_gis/r.topmodel">How to run r.topmodel</a>
- <h2>AUTHORS</h2>
- <a href="mailto:grass4u@gmail com">Huidae Cho</a><br>
- Hydro Laboratory, Kyungpook National University, South Korea
- <p>
- Based on TMOD9502.FOR by Keith Beven.
- <p><i>Last changed: $Date$</i>
|