poly.c 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177
  1. /*
  2. ****************************************************************************
  3. *
  4. * MODULE: Vector library
  5. *
  6. * AUTHOR(S): Original author CERL, probably Dave Gerdes.
  7. * Update to GRASS 5.7 Radim Blazek.
  8. *
  9. * PURPOSE: Lower level functions for reading/writing/manipulating vectors.
  10. *
  11. * COPYRIGHT: (C) 2009 by the GRASS Development Team
  12. *
  13. * This program is free software under the GNU General Public
  14. * License (>=v2). Read the file COPYING that comes with GRASS
  15. * for details.
  16. *
  17. *****************************************************************************/
  18. #include <math.h>
  19. #include <grass/Vect.h>
  20. #ifndef HUGE_VAL
  21. #define HUGE_VAL 9999999999999.0
  22. #endif
  23. /*
  24. ** fills BPoints (must be inited previously) by points from input
  25. ** array LPoints. Each input LPoints[i] must have at least 2 points.
  26. **
  27. ** returns number of points or -1 on error
  28. */
  29. int dig_get_poly_points(int n_lines, struct line_pnts **LPoints, int *direction, /* line direction: > 0 or < 0 */
  30. struct line_pnts *BPoints)
  31. {
  32. register int i, j, point, start, end, inc;
  33. struct line_pnts *Points;
  34. int n_points;
  35. BPoints->n_points = 0;
  36. if (n_lines < 1) {
  37. return 0;
  38. }
  39. /* Calc required space */
  40. n_points = 0;
  41. for (i = 0; i < n_lines; i++) {
  42. Points = LPoints[i];
  43. n_points += Points->n_points - 1; /* each line from first to last - 1 */
  44. }
  45. n_points++; /* last point */
  46. if (0 > dig_alloc_points(BPoints, n_points))
  47. return (-1);
  48. point = 0;
  49. j = 0;
  50. for (i = 0; i < n_lines; i++) {
  51. Points = LPoints[i];
  52. if (direction[i] > 0) {
  53. start = 0;
  54. end = Points->n_points - 1;
  55. inc = 1;
  56. }
  57. else {
  58. start = Points->n_points - 1;
  59. end = 0;
  60. inc = -1;
  61. }
  62. for (j = start; j != end; j += inc) {
  63. BPoints->x[point] = Points->x[j];
  64. BPoints->y[point] = Points->y[j];
  65. point++;
  66. }
  67. }
  68. /* last point */
  69. BPoints->x[point] = Points->x[j];
  70. BPoints->y[point] = Points->y[j];
  71. BPoints->n_points = n_points;
  72. return (BPoints->n_points);
  73. }
  74. /*
  75. ** Calculate signed area size for polygon.
  76. **
  77. ** Total area is positive for clockwise and negative for counterclockwise
  78. ** Formula modified from
  79. ** Sunday, Daniel. 2002. Fast Polygon Area and Newell Normal Computation.
  80. ** Journal of Graphics Tools; 7(2):9-13.
  81. */
  82. int dig_find_area_poly(struct line_pnts *Points, double *totalarea)
  83. {
  84. int i, n = Points->n_points - 1;
  85. double *x, *y;
  86. double tot_area;
  87. /* TODO: check if results are still accurate without pruning *Points first
  88. * consecutive duplicate vertices should in theory result in wrong area size */
  89. x = Points->x;
  90. y = Points->y;
  91. /* first point 0 == point n */
  92. tot_area = y[0] * (x[1] - x[n - 1]);
  93. for (i = 1; i < n; i++) {
  94. tot_area += y[i] * (x[i + 1] - x[i - 1]);
  95. }
  96. *totalarea = 0.5 * tot_area;
  97. return (0);
  98. }
  99. /*
  100. * find orientation of polygon
  101. * faster than signed area for > 4 vertices
  102. *
  103. * return value is positive for CW, negative for CCW, 0 for degenerate
  104. *
  105. * Points must be closed polygon
  106. *
  107. * this code uses bits and pieces from softSurfer and GEOS
  108. * (C) 2000 softSurfer (www.softsurfer.com)
  109. * (C) 2006 Refractions Research Inc.
  110. */
  111. double dig_find_poly_orientation(struct line_pnts *Points)
  112. {
  113. unsigned int pnext, pprev, pcur = 0;
  114. unsigned int lastpoint = Points->n_points - 1;
  115. double *x, *y;
  116. /* first find leftmost highest vertex of the polygon */
  117. /* could also be leftmost lowest, rightmost highest or rightmost lowest */
  118. x = Points->x;
  119. y = Points->y;
  120. for (pnext = 1; pnext < lastpoint; pnext++) {
  121. if (y[pnext] < y[pcur])
  122. continue;
  123. else if (y[pnext] == y[pcur]) { /* just as high */
  124. if (x[pnext] < x[pcur]) /* but to the right */
  125. continue;
  126. }
  127. pcur = pnext; /* a new leftmost highest vertex */
  128. }
  129. /* Points are not pruned, so ... */
  130. pprev = pnext = pcur;
  131. /* find next distinct point */
  132. do {
  133. if (pnext < lastpoint - 1)
  134. pnext++;
  135. else
  136. pnext = 0;
  137. } while (pnext != pcur && x[pcur] == x[pnext] && y[pcur] == y[pnext]);
  138. /* find previous distinct point */
  139. do {
  140. if (pprev > 0)
  141. pprev--;
  142. else
  143. pprev = lastpoint - 1;
  144. } while (pprev != pcur && x[pcur] == x[pprev] && y[pcur] == y[pprev]);
  145. /* orientation at vertex pcur == signed area for triangle pprev, pcur, pnext
  146. * rather use robust determinant of Olivier Devillers? */
  147. return (x[pnext] - x[pprev]) * (y[pcur] - y[pprev])
  148. - (x[pcur] - x[pprev]) * (y[pnext] - y[pprev]);
  149. }