v.lidar.edgedetection.html 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122
  1. <h2>DESCRIPTION</h2>
  2. <em>v.lidar.edgedetection</em> is the first of three steps to filter
  3. LiDAR data. The filter aims to recognize and extract attached and
  4. detached object (such as buildings, bridges, power lines, trees, etc.)
  5. in order to create a Digital Terrain Model.
  6. <br>
  7. <br>
  8. In particular, this module detects the edge of each single feature over
  9. the terrain surface of a LIDAR point surface. First of all, a bilinear
  10. spline interpolation with a Tychonov regularization parameter is
  11. performed. The gradient is minimized and the low Tychonov regularization
  12. parameter brings the interpolated functions as close as possible to the
  13. observations. Bicubic spline interpolation with Tychonov regularization
  14. is then performed. However, now the curvature is minimized and the
  15. regularization parameter is set to a high value. For each point, an
  16. interpolated value is computed from the bicubic surface and an interpolated
  17. gradient is computed from the bilinear surface. At each point the gradient
  18. magnitude and the direction of the edge vector are calculated, and the
  19. residual between interpolated and observed values is computed. Two thresholds
  20. are defined on the gradient, a high threshold <b>tgh</b> and a low one
  21. <b>tgl</b>. For each point, if the gradient magnitude is greater than or
  22. equal to the high threshold and its residual is greater than or equal to
  23. zero, it is labeled as an EDGE point. Similarly a point is labeled as
  24. being an EDGE point if the gradient magnitude is greater than or equal to
  25. the low threshold, its residual is greater than or equal to zero, and the
  26. gradient to two of eight neighboring points is greater than the high
  27. threshold. Other points are classified as TERRAIN.
  28. <br>
  29. <br>
  30. The output will be a vector map in which points has been classified as
  31. TERRAIN, EDGE or UNKNOWN. This vector map should be the input of
  32. <em>v.lidar.growing</em> module.
  33. <h2>NOTES</h2>
  34. In this module, an external table will be created which will be useful for
  35. the next module of the procedure of LiDAR data filtering. In this table
  36. the interpolated height values of each point will be recorded. Also points
  37. in the output vector map will be classified as:
  38. <br>
  39. <br>
  40. TERRAIN (cat = 1, layer = 1)
  41. <br>
  42. EDGE (cat = 2, layer = 1)
  43. <br>
  44. UNKNOWN (cat = 3, layer = 1)
  45. <br>
  46. The final result of the whole procedure (v.lidar.edgedetection,
  47. v.lidar.growing, v.lidar.correction) will be a point classification in
  48. four categories:
  49. <br>
  50. <br>
  51. TERRAIN SINGLE PULSE (cat = 1, layer = 2)
  52. <br>
  53. TERRAIN DOUBLE PULSE (cat = 2, layer = 2)
  54. <br>
  55. OBJECT SINGLE PULSE (cat = 3, layer = 2)
  56. <br>
  57. OBJECT DOUBLE PULSE (cat = 4, layer = 2)
  58. <h2>EXAMPLES</h2>
  59. <h3>Basic edge detection</h3>
  60. <div class="code"><pre>
  61. v.lidar.edgedetection input=vector_last output=edge see=8 sen=8 lambda_g=0.5
  62. </pre></div>
  63. <h2>SEE ALSO</h2>
  64. <em>
  65. <a HREF="v.lidar.growing.html">v.lidar.growing</a>,
  66. <a HREF="v.lidar.correction.html">v.lidar.correction</a>,
  67. <a HREF="v.surf.bspline.html">v.surf.bspline</a>
  68. </em>
  69. <h2>AUTHORS</h2>
  70. Original version of program in GRASS 5.4:
  71. <BR>
  72. Maria Antonia Brovelli, Massimiliano Cannata, Ulisse Longoni and Mirko Reguzzoni
  73. <BR><BR>
  74. Update for GRASS 6.X:
  75. <BR>
  76. Roberto Antolin and Gonzalo Moreno
  77. <h2>REFERENCES</h2>
  78. Antolin, R. et al., 2006. Digital terrain models determination by LiDAR
  79. technology: Po basin experimentation. Bolletino di Geodesia e Scienze
  80. Affini, anno LXV, n. 2, pp. 69-89.
  81. <br>
  82. <br>
  83. Brovelli M. A., Cannata M., Longoni U.M., 2004. LIDAR Data Filtering and
  84. DTM Interpolation Within GRASS, Transactions in GIS, April 2004, vol. 8,
  85. iss. 2, pp. 155-174(20), Blackwell Publishing Ltd.
  86. <br>
  87. <br>
  88. Brovelli M. A., Cannata M., 2004. Digital Terrain model reconstruction in
  89. urban areas from airborne laser scanning data: the method and an example
  90. for Pavia (Northern Italy). Computers and Geosciences 30 (2004) pp.325-331
  91. <br>
  92. <br>
  93. Brovelli M. A. and Longoni U.M., 2003. Software per il filtraggio di dati
  94. LIDAR, Rivista dell?Agenzia del Territorio, n. 3-2003, pp. 11-22 (ISSN 1593-2192).
  95. <br>
  96. <br>
  97. Brovelli M. A., Cannata M. and Longoni U.M., 2002. DTM LIDAR in area urbana,
  98. Bollettino SIFET N.2, pp. 7-26.
  99. <br>
  100. <br>
  101. Performances of the filter can be seen in the
  102. <a HREF="http://www.itc.nl/isprswgIII-3/filtertest/MainDoc.htm">ISPRS WG III/3 Comparison of Filters</a>
  103. report by Sithole, G. and Vosselman, G., 2003.
  104. <br>
  105. <p>
  106. <i>Last changed: $Date$</i>