123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232 |
- /****************************************************************************
- * MODULE: R-Tree library
- *
- * AUTHOR(S): Antonin Guttman - original code
- * Daniel Green (green@superliminal.com) - major clean-up
- * and implementation of bounding spheres
- *
- * PURPOSE: Multidimensional index
- *
- * COPYRIGHT: (C) 2001 by the GRASS Development Team
- *
- * This program is free software under the GNU General Public
- * License (>=v2). Read the file COPYING that comes with GRASS
- * for details.
- *****************************************************************************/
- #include <stdio.h>
- #include <stdlib.h>
- #include "assert.h"
- #include "index.h"
- #include "card.h"
- /* Initialize one branch cell in a node. */
- static void RTreeInitBranch(struct Branch *b)
- {
- RTreeInitRect(&(b->rect));
- b->child = NULL;
- }
- /* Initialize a Node structure. */
- void RTreeInitNode(struct Node *N)
- {
- register struct Node *n = N;
- register int i;
- n->count = 0;
- n->level = -1;
- for (i = 0; i < MAXCARD; i++)
- RTreeInitBranch(&(n->branch[i]));
- }
- /* Make a new node and initialize to have all branch cells empty. */
- struct Node *RTreeNewNode(void)
- {
- register struct Node *n;
- /* n = new Node; */
- n = (struct Node *)malloc(sizeof(struct Node));
- assert(n);
- RTreeInitNode(n);
- return n;
- }
- void RTreeFreeNode(struct Node *p)
- {
- assert(p);
- /* delete p; */
- free(p);
- }
- static void RTreePrintBranch(struct Branch *b, int depth)
- {
- RTreePrintRect(&(b->rect), depth);
- RTreePrintNode(b->child, depth);
- }
- extern void RTreeTabIn(int depth)
- {
- int i;
- for (i = 0; i < depth; i++)
- putchar('\t');
- }
- /* Print out the data in a node. */
- void RTreePrintNode(struct Node *n, int depth)
- {
- int i;
- assert(n);
- RTreeTabIn(depth);
- fprintf(stdout, "node");
- if (n->level == 0)
- fprintf(stdout, " LEAF");
- else if (n->level > 0)
- fprintf(stdout, " NONLEAF");
- else
- fprintf(stdout, " TYPE=?");
- fprintf(stdout, " level=%d count=%d address=%o\n", n->level, n->count,
- (unsigned)n);
- for (i = 0; i < n->count; i++) {
- if (n->level == 0) {
- /* RTreeTabIn(depth); */
- /* fprintf (stdout, "\t%d: data = %d\n", i, n->branch[i].child); */
- }
- else {
- RTreeTabIn(depth);
- fprintf(stdout, "branch %d\n", i);
- RTreePrintBranch(&n->branch[i], depth + 1);
- }
- }
- }
- /*
- * Find the smallest rectangle that includes all rectangles in
- * branches of a node.
- */
- struct Rect RTreeNodeCover(struct Node *N)
- {
- register struct Node *n = N;
- register int i, first_time = 1;
- struct Rect r;
- assert(n);
- RTreeInitRect(&r);
- for (i = 0; i < MAXKIDS(n); i++)
- if (n->branch[i].child) {
- if (first_time) {
- r = n->branch[i].rect;
- first_time = 0;
- }
- else
- r = RTreeCombineRect(&r, &(n->branch[i].rect));
- }
- return r;
- }
- /*
- * Pick a branch. Pick the one that will need the smallest increase
- * in area to accomodate the new rectangle. This will result in the
- * least total area for the covering rectangles in the current node.
- * In case of a tie, pick the one which was smaller before, to get
- * the best resolution when searching.
- */
- int RTreePickBranch(struct Rect *R, struct Node *N)
- {
- register struct Rect *r = R;
- register struct Node *n = N;
- register struct Rect *rr;
- register int i, first_time = 1;
- RectReal increase, bestIncr = (RectReal) - 1, area, bestArea = 0;
- int best = 0;
- struct Rect tmp_rect;
- assert(r && n);
- for (i = 0; i < MAXKIDS(n); i++) {
- if (n->branch[i].child) {
- rr = &n->branch[i].rect;
- area = RTreeRectSphericalVolume(rr);
- tmp_rect = RTreeCombineRect(r, rr);
- increase = RTreeRectSphericalVolume(&tmp_rect) - area;
- if (increase < bestIncr || first_time) {
- best = i;
- bestArea = area;
- bestIncr = increase;
- first_time = 0;
- }
- else if (increase == bestIncr && area < bestArea) {
- best = i;
- bestArea = area;
- bestIncr = increase;
- }
- }
- }
- return best;
- }
- /*
- * Add a branch to a node. Split the node if necessary.
- * Returns 0 if node not split. Old node updated.
- * Returns 1 if node split, sets *new_node to address of new node.
- * Old node updated, becomes one of two.
- */
- int RTreeAddBranch(struct Branch *B, struct Node *N, struct Node **New_node)
- {
- register struct Branch *b = B;
- register struct Node *n = N;
- register struct Node **new_node = New_node;
- register int i;
- assert(b);
- assert(n);
- if (n->count < MAXKIDS(n)) { /* split won't be necessary */
- for (i = 0; i < MAXKIDS(n); i++) { /* find empty branch */
- if (n->branch[i].child == NULL) {
- n->branch[i] = *b;
- n->count++;
- break;
- }
- }
- return 0;
- }
- else {
- assert(new_node);
- RTreeSplitNode(n, b, new_node);
- return 1;
- }
- }
- /* Disconnect a dependent node. */
- void RTreeDisconnectBranch(struct Node *n, int i)
- {
- assert(n && i >= 0 && i < MAXKIDS(n));
- assert(n->branch[i].child);
- RTreeInitBranch(&(n->branch[i]));
- n->count--;
- }
- /* Destroy (free) node recursively. */
- void RTreeDestroyNode(struct Node *n)
- {
- int i;
- if (n->level > 0) { /* it is not leaf -> destroy childs */
- for (i = 0; i < NODECARD; i++) {
- if (n->branch[i].child) {
- RTreeDestroyNode(n->branch[i].child);
- }
- }
- }
- /* Free this node */
- RTreeFreeNode(n);
- }
|