123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298 |
- <h2>DESCRIPTION</h2>
- <em>t.rast.accumulate</em> is designed to perform temporal accumulations
- of space time raster datasets.
- This module expects a space time raster dataset as input that will be
- sampled by a given <b>granularity</b>. All maps that have the start
- time during the actual granule will be accumulated with the predecessor
- granule accumulation result using the raster module
- <a href="r.series.accumulate.html">r.series.accumulate</a>. The default
- granularity is 1 day, but any temporal granularity can be set.
- <p>
- The <b>start</b> time and the <b>end</b> time of the accumulation
- process must be set, eg. <b>start="2000-03-01" end="2011-01-01"</b>. In
- addition, a <b>cycle</b>, eg. <b>cycle="8 months"</b>, can be specified,
- that defines after which interval of time the accumulation process
- restarts. The <b>offset</b> option specifies the time that should be
- skipped between two cycles, eg. <b>offset="4 months"</b>.
- <p>
- The <b>lower</b> and <b>upper</b> <b>limits</b> of the accumulation
- process can be set, either by using space time raster datasets or by
- using fixed values for all raster cells and time steps. The raster
- maps that specify the lower and upper limits of the actual granule
- will be detected using the following temporal relations: equals,
- during, overlaps, overlapped and contains. First, all maps with time
- stamps equal to the current granule will be detected, the first lower
- map and the first upper map found will be used as limit definitions.
- If no equal maps are found, then maps with a temporal during relation
- are detected, then maps that temporally overlap the actual granules,
- until maps that have a temporal contain relation are detected. If no
- maps are found or lower/upper STRDS are not defined, then the
- <b>limits</b> option is used, eg. <b>limits=10,30</b>.
- <p>
- The <b>upper</b> <b>limit</b> is only used in the Biologically
- Effective Degree Days calculation.
- <p>
- The options <b>shift</b>, <b>scale</b> and <b>method</b> are passed to
- <a href="r.series.accumulate.html">r.series.accumulate</a>.
- Please refer to the manual page of
- <a href="r.series.accumulate.html">r.series.accumulate</a> for detailed
- option description.
- <p>
- The <b>output</b> is a new space time raster dataset with the provided
- start time, end time and granularity containing the accumulated raster
- maps. The <b>base</b> name of the generated maps must always be set.
- The <b>output</b> space time raster dataset can then be analyzed using
- <a href="t.rast.accdetect.html">t.rast.accdetect</a> to detect specific
- accumulation patterns.
- <h2>EXAMPLE</h2>
- This is an example how to accumulate the daily mean temperature of
- Europe from 1990 to 2000 using the growing-degree-day method to detect
- grass hopper reproduction cycles that are critical to agriculture.
- <div class="code"><pre>
- # Get the temperature data
- wget http://www-pool.math.tu-berlin.de/~soeren/grass/temperature_mean_1990_2000_daily_celsius.tar.gz
- # Create a temporary location directory
- mkdir -p /tmp/grassdata/LL
- # Start GRASS and create a new location with PERMANENT mapset
- grass -c EPSG:4326 /tmp/grassdata/LL/PERMANENT
- # Import the temperature data
- t.rast.import input=temperature_mean_1990_2000_daily_celsius.tar.gz \
- output=temperature_mean_1990_2000_daily_celsius directory=/tmp
- # We need to set the region correctly
- g.region -p raster=`t.rast.list input=temperature_mean_1990_2000_daily_celsius column=name | tail -1`
- # We can zoom to the raster map
- g.region -p zoom=`t.rast.list input=temperature_mean_1990_2000_daily_celsius column=name | tail -1`
- #############################################################################
- #### ACCUMULATION USING GDD METHOD ##########################################
- #############################################################################
- # The computation of grashopper pest control cycles is based on:
- #
- # Using Growing Degree Days For Insect Management
- # Nancy E. Adams
- # Extension Educator, Agricultural Resources
- #
- # available here: http://extension.unh.edu/agric/gddays/docs/growch.pdf
- # Now we compute the Biologically Effective Degree Days
- # from 1990 - 2000 for each year (12 month cycle) with
- # a granularity of one day. Base temperature is 10°C, upper limit is 30°C.
- # Hence the accumulation starts at 10°C and does not accumulate values above 30°C.
- t.rast.accumulate input="temperature_mean_1990_2000_daily_celsius" \
- output="temperature_mean_1990_2000_daily_celsius_accumulated_10_30" \
- limits="10,30" start="1990-01-01" stop="2000-01-01" cycle="12 months" \
- basename="temp_acc_daily_10_30" method="bedd"
- #############################################################################
- #### ACCUMULATION PATTERN DETECTION #########################################
- #############################################################################
- # Now we detect the three grasshopper pest control cycles
- # First cycle at 325°C - 427°C GDD
- t.rast.accdetect input=temperature_mean_1990_2000_daily_celsius_accumulated_10_30@PERMANENT \
- occ=leafhopper_occurrence_c1_1990_2000 start="1990-01-01" stop="2000-01-01" \
- cycle="12 months" range=325,427 basename=lh_c1 indicator=leafhopper_indicator_c1_1990_2000
- # Second cycle at 685°C - 813°C GDD
- t.rast.accdetect input=temperature_mean_1990_2000_daily_celsius_accumulated_10_30@PERMANENT \
- occ=leafhopper_occurrence_c2_1990_2000 start="1990-01-01" stop="2000-01-01" \
- cycle="12 months" range=685,813 basename=lh_c2 indicator=leafhopper_indicator_c2_1990_2000
- # Third cycle at 1047°C - 1179°C GDD
- t.rast.accdetect input=temperature_mean_1990_2000_daily_celsius_accumulated_10_30@PERMANENT \
- occ=leafhopper_occurrence_c3_1990_2000 start="1990-01-01" stop="2000-01-01" \
- cycle="12 months" range=1047,1179 basename=lh_c3 indicator=leafhopper_indicator_c3_1990_2000
- #############################################################################
- #### YEARLY SPATIAL OCCURRENCE COMPUTATION OF ALL CYCLES ####################
- #############################################################################
- # Extract the areas that have full cycles
- t.rast.aggregate input=leafhopper_indicator_c1_1990_2000 gran="1 year" \
- output=leafhopper_cycle_1_1990_2000_yearly method=maximum basename=li_c1
- t.rast.mapcalc input=leafhopper_cycle_1_1990_2000_yearly basename=lh_clean_c1 \
- output=leafhopper_cycle_1_1990_2000_yearly_clean \
- expression="if(leafhopper_cycle_1_1990_2000_yearly == 3, 1, null())"
- t.rast.aggregate input=leafhopper_indicator_c2_1990_2000 gran="1 year" \
- output=leafhopper_cycle_2_1990_2000_yearly method=maximum basename=li_c2
- t.rast.mapcalc input=leafhopper_cycle_2_1990_2000_yearly basename=lh_clean_c2 \
- output=leafhopper_cycle_2_1990_2000_yearly_clean \
- expression="if(leafhopper_cycle_2_1990_2000_yearly == 3, 2, null())"
- t.rast.aggregate input=leafhopper_indicator_c3_1990_2000 gran="1 year" \
- output=leafhopper_cycle_3_1990_2000_yearly method=maximum basename=li_c3
- t.rast.mapcalc input=leafhopper_cycle_3_1990_2000_yearly basename=lh_clean_c3 \
- output=leafhopper_cycle_3_1990_2000_yearly_clean \
- expression="if(leafhopper_cycle_3_1990_2000_yearly == 3, 3, null())"
- t.rast.mapcalc input=leafhopper_cycle_1_1990_2000_yearly_clean,leafhopper_cycle_2_1990_2000_yearly_clean,leafhopper_cycle_3_1990_2000_yearly_clean \
- basename=lh_cleann_all_cycles \
- output=leafhopper_all_cycles_1990_2000_yearly_clean \
- expression="if(isnull(leafhopper_cycle_3_1990_2000_yearly_clean), \
- if(isnull(leafhopper_cycle_2_1990_2000_yearly_clean), \
- if(isnull(leafhopper_cycle_1_1990_2000_yearly_clean), \
- null() ,1),2),3)"
- cat > color.table << EOF
- 3 yellow
- 2 blue
- 1 red
- EOF
- t.rast.colors input=leafhopper_cycle_1_1990_2000_yearly_clean rules=color.table
- t.rast.colors input=leafhopper_cycle_2_1990_2000_yearly_clean rules=color.table
- t.rast.colors input=leafhopper_cycle_3_1990_2000_yearly_clean rules=color.table
- t.rast.colors input=leafhopper_all_cycles_1990_2000_yearly_clean rules=color.table
- #############################################################################
- ################ DURATION COMPUTATION #######################################
- #############################################################################
- # Extract the duration in days of the first cycle
- t.rast.aggregate input=leafhopper_occurrence_c1_1990_2000 gran="1 year" \
- output=leafhopper_min_day_c1_1990_2000 method=minimum basename=occ_min_day_c1
- t.rast.aggregate input=leafhopper_occurrence_c1_1990_2000 gran="1 year" \
- output=leafhopper_max_day_c1_1990_2000 method=maximum basename=occ_max_day_c1
- t.rast.mapcalc input=leafhopper_min_day_c1_1990_2000,leafhopper_max_day_c1_1990_2000 \
- basename=occ_duration_c1 \
- output=leafhopper_duration_c1_1990_2000 \
- expression="leafhopper_max_day_c1_1990_2000 - leafhopper_min_day_c1_1990_2000"
- # Extract the duration in days of the second cycle
- t.rast.aggregate input=leafhopper_occurrence_c2_1990_2000 gran="1 year" \
- output=leafhopper_min_day_c2_1990_2000 method=minimum basename=occ_min_day_c2
- t.rast.aggregate input=leafhopper_occurrence_c2_1990_2000 gran="1 year" \
- output=leafhopper_max_day_c2_1990_2000 method=maximum basename=occ_max_day_c2
- t.rast.mapcalc input=leafhopper_min_day_c2_1990_2000,leafhopper_max_day_c2_1990_2000 \
- basename=occ_duration_c2 \
- output=leafhopper_duration_c2_1990_2000 \
- expression="leafhopper_max_day_c2_1990_2000 - leafhopper_min_day_c2_1990_2000"
- # Extract the duration in days of the third cycle
- t.rast.aggregate input=leafhopper_occurrence_c3_1990_2000 gran="1 year" \
- output=leafhopper_min_day_c3_1990_2000 method=minimum basename=occ_min_day_c3
- t.rast.aggregate input=leafhopper_occurrence_c3_1990_2000 gran="1 year" \
- output=leafhopper_max_day_c3_1990_2000 method=maximum basename=occ_max_day_c3
- t.rast.mapcalc input=leafhopper_min_day_c3_1990_2000,leafhopper_max_day_c3_1990_2000 \
- basename=occ_duration_c3 \
- output=leafhopper_duration_c3_1990_2000 \
- expression="leafhopper_max_day_c3_1990_2000 - leafhopper_min_day_c3_1990_2000"
- t.rast.colors input=leafhopper_duration_c1_1990_2000 color=rainbow
- t.rast.colors input=leafhopper_duration_c2_1990_2000 color=rainbow
- t.rast.colors input=leafhopper_duration_c3_1990_2000 color=rainbow
- #############################################################################
- ################ MONTHLY CYCLES OCCURRENCE ##################################
- #############################################################################
- # Extract the monthly indicator that shows the start and end of a cycle
- # First cycle
- t.rast.aggregate input=leafhopper_indicator_c1_1990_2000 gran="1 month" \
- output=leafhopper_indi_min_month_c1_1990_2000 method=minimum basename=occ_indi_min_month_c1
- t.rast.aggregate input=leafhopper_indicator_c1_1990_2000 gran="1 month" \
- output=leafhopper_indi_max_month_c1_1990_2000 method=maximum basename=occ_indi_max_month_c1
- t.rast.mapcalc input=leafhopper_indi_min_month_c1_1990_2000,leafhopper_indi_max_month_c1_1990_2000 \
- basename=indicator_monthly_c1 \
- output=leafhopper_monthly_indicator_c1_1990_2000 \
- expression="if(leafhopper_indi_min_month_c1_1990_2000 == 1, 1, if(leafhopper_indi_max_month_c1_1990_2000 == 3, 3, 2))"
- # Second cycle
- t.rast.aggregate input=leafhopper_indicator_c2_1990_2000 gran="1 month" \
- output=leafhopper_indi_min_month_c2_1990_2000 method=minimum basename=occ_indi_min_month_c2
- t.rast.aggregate input=leafhopper_indicator_c2_1990_2000 gran="1 month" \
- output=leafhopper_indi_max_month_c2_1990_2000 method=maximum basename=occ_indi_max_month_c2
- t.rast.mapcalc input=leafhopper_indi_min_month_c2_1990_2000,leafhopper_indi_max_month_c2_1990_2000 \
- basename=indicator_monthly_c2 \
- output=leafhopper_monthly_indicator_c2_1990_2000 \
- expression="if(leafhopper_indi_min_month_c2_1990_2000 == 1, 1, if(leafhopper_indi_max_month_c2_1990_2000 == 3, 3, 2))"
- # Third cycle
- t.rast.aggregate input=leafhopper_indicator_c3_1990_2000 gran="1 month" \
- output=leafhopper_indi_min_month_c3_1990_2000 method=minimum basename=occ_indi_min_month_c3
- t.rast.aggregate input=leafhopper_indicator_c3_1990_2000 gran="1 month" \
- output=leafhopper_indi_max_month_c3_1990_2000 method=maximum basename=occ_indi_max_month_c3
- t.rast.mapcalc input=leafhopper_indi_min_month_c3_1990_2000,leafhopper_indi_max_month_c3_1990_2000 \
- basename=indicator_monthly_c3 \
- output=leafhopper_monthly_indicator_c3_1990_2000 \
- expression="if(leafhopper_indi_min_month_c3_1990_2000 == 1, 1, if(leafhopper_indi_max_month_c3_1990_2000 == 3, 3, 2))"
- cat > color.table << EOF
- 3 red
- 2 yellow
- 1 green
- EOF
- t.rast.colors input=leafhopper_monthly_indicator_c1_1990_2000 rules=color.table
- t.rast.colors input=leafhopper_monthly_indicator_c2_1990_2000 rules=color.table
- t.rast.colors input=leafhopper_monthly_indicator_c3_1990_2000 rules=color.table
- #############################################################################
- ################ VISUALIZATION ##############################################
- #############################################################################
- # Now we use g.gui.animation to visualize the yearly occurrence, the duration and the monthly occurrence
- # Yearly occurrence of all reproduction cycles
- g.gui.animation strds=leafhopper_all_cycles_1990_2000_yearly_clean
- # Yearly duration of reproduction cycle 1
- g.gui.animation strds=leafhopper_duration_c1_1990_2000
- # Yearly duration of reproduction cycle 2
- g.gui.animation strds=leafhopper_duration_c2_1990_2000
- # Yearly duration of reproduction cycle 3
- g.gui.animation strds=leafhopper_duration_c3_1990_2000
- # Monthly occurrence of reproduction cycle 1
- g.gui.animation strds=leafhopper_monthly_indicator_c1_1990_2000
- # Monthly occurrence of reproduction cycle 2
- g.gui.animation strds=leafhopper_monthly_indicator_c2_1990_2000
- # Monthly occurrence of reproduction cycle 3
- g.gui.animation strds=leafhopper_monthly_indicator_c3_1990_2000
- </pre></div>
- <h2>REFERENCES</h2>
- <ul>
- <li> Jones, G.V., Duff, A.A., Hall, A., Myers, J.W., 2010.
- Spatial Analysis of Climate in Winegrape Growing Regions in the
- Western United States. Am. J. Enol. Vitic. 61, 313-326.</li>
- </ul>
- <h2>SEE ALSO</h2>
- <em>
- <a href="t.rast.accdetect.html">t.rast.accdetect</a>,
- <a href="t.rast.aggregate.html">t.rast.aggregate</a>,
- <a href="t.rast.mapcalc.html">t.rast.mapcalc</a>,
- <a href="t.info.html">t.info</a>,
- <a href="g.region.html">g.region</a>,
- <a href="r.series.accumulate.html">r.series.accumulate</a>
- </em>
- <h2>AUTHOR</h2>
- Sören Gebbert, Thünen Institute of Climate-Smart Agriculture
|