12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013 |
- """!@package grass.temporal
- Temporal vector algebra
- (C) 2014 by the GRASS Development Team
- This program is free software under the GNU General Public
- License (>=v2). Read the file COPYING that comes with GRASS
- for details.
- @authors Thomas Leppelt and Soeren Gebbert
- @code
- >>> import grass.temporal as tgis
- >>> tgis.init(True)
- >>> p = tgis.TemporalVectorAlgebraLexer()
- >>> p.build()
- >>> p.debug = True
- >>> expression = "C = A : B"
- >>> p.test(expression)
- C = A : B
- LexToken(NAME,'C',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(NAME,'A',1,4)
- LexToken(T_SELECT,':',1,6)
- LexToken(NAME,'B',1,8)
- >>> expression = "C = test1 !: test2"
- >>> p.test(expression)
- C = test1 !: test2
- LexToken(NAME,'C',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(NAME,'test1',1,4)
- LexToken(T_NOT_SELECT,'!:',1,10)
- LexToken(NAME,'test2',1,13)
- >>> expression = "C = test1 {equal,:} test2"
- >>> p.test(expression)
- C = test1 {equal,:} test2
- LexToken(NAME,'C',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(NAME,'test1',1,4)
- LexToken(T_SELECT_OPERATOR,'{equal,:}',1,10)
- LexToken(NAME,'test2',1,20)
- >>> expression = "C = test1 {equal,!:} test2"
- >>> p.test(expression)
- C = test1 {equal,!:} test2
- LexToken(NAME,'C',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(NAME,'test1',1,4)
- LexToken(T_SELECT_OPERATOR,'{equal,!:}',1,10)
- LexToken(NAME,'test2',1,21)
- >>> expression = "C = test1 # test2"
- >>> p.test(expression)
- C = test1 # test2
- LexToken(NAME,'C',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(NAME,'test1',1,4)
- LexToken(HASH,'#',1,10)
- LexToken(NAME,'test2',1,12)
- >>> expression = "C = test1 {#} test2"
- >>> p.test(expression)
- C = test1 {#} test2
- LexToken(NAME,'C',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(NAME,'test1',1,4)
- LexToken(T_HASH_OPERATOR,'{#}',1,10)
- LexToken(NAME,'test2',1,14)
- >>> expression = "C = test1 {equal,#} test2"
- >>> p.test(expression)
- C = test1 {equal,#} test2
- LexToken(NAME,'C',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(NAME,'test1',1,4)
- LexToken(T_HASH_OPERATOR,'{equal,#}',1,10)
- LexToken(NAME,'test2',1,20)
- >>> expression = "C = test1 {equal|during,#} test2"
- >>> p.test(expression)
- C = test1 {equal|during,#} test2
- LexToken(NAME,'C',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(NAME,'test1',1,4)
- LexToken(T_HASH_OPERATOR,'{equal|during,#}',1,10)
- LexToken(NAME,'test2',1,27)
- >>> expression = "E = test1 : test2 !: test1"
- >>> p.test(expression)
- E = test1 : test2 !: test1
- LexToken(NAME,'E',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(NAME,'test1',1,4)
- LexToken(T_SELECT,':',1,10)
- LexToken(NAME,'test2',1,12)
- LexToken(T_NOT_SELECT,'!:',1,18)
- LexToken(NAME,'test1',1,21)
- >>> expression = 'D = buff_t(test1,"10 months")'
- >>> p.test(expression)
- D = buff_t(test1,"10 months")
- LexToken(NAME,'D',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(BUFF_T,'buff_t',1,4)
- LexToken(LPAREN,'(',1,10)
- LexToken(NAME,'test1',1,11)
- LexToken(COMMA,',',1,16)
- LexToken(QUOTE,'"',1,17)
- LexToken(INT,10,1,18)
- LexToken(NAME,'months',1,21)
- LexToken(QUOTE,'"',1,27)
- LexToken(RPAREN,')',1,28)
- >>> expression = 'H = tsnap(test1)'
- >>> p.test(expression)
- H = tsnap(test1)
- LexToken(NAME,'H',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(TSNAP,'tsnap',1,4)
- LexToken(LPAREN,'(',1,9)
- LexToken(NAME,'test1',1,10)
- LexToken(RPAREN,')',1,15)
- >>> expression = 'H = tsnap(test2 {during,:} buff_t(test1, "1 days"))'
- >>> p.test(expression)
- H = tsnap(test2 {during,:} buff_t(test1, "1 days"))
- LexToken(NAME,'H',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(TSNAP,'tsnap',1,4)
- LexToken(LPAREN,'(',1,9)
- LexToken(NAME,'test2',1,10)
- LexToken(T_SELECT_OPERATOR,'{during,:}',1,16)
- LexToken(BUFF_T,'buff_t',1,27)
- LexToken(LPAREN,'(',1,33)
- LexToken(NAME,'test1',1,34)
- LexToken(COMMA,',',1,39)
- LexToken(QUOTE,'"',1,41)
- LexToken(INT,1,1,42)
- LexToken(NAME,'days',1,44)
- LexToken(QUOTE,'"',1,48)
- LexToken(RPAREN,')',1,49)
- LexToken(RPAREN,')',1,50)
- >>> expression = 'H = tshift(test2 {during,:} buff_t(test1, "1 days"), "1 months")'
- >>> p.test(expression)
- H = tshift(test2 {during,:} buff_t(test1, "1 days"), "1 months")
- LexToken(NAME,'H',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(TSHIFT,'tshift',1,4)
- LexToken(LPAREN,'(',1,10)
- LexToken(NAME,'test2',1,11)
- LexToken(T_SELECT_OPERATOR,'{during,:}',1,17)
- LexToken(BUFF_T,'buff_t',1,28)
- LexToken(LPAREN,'(',1,34)
- LexToken(NAME,'test1',1,35)
- LexToken(COMMA,',',1,40)
- LexToken(QUOTE,'"',1,42)
- LexToken(INT,1,1,43)
- LexToken(NAME,'days',1,45)
- LexToken(QUOTE,'"',1,49)
- LexToken(RPAREN,')',1,50)
- LexToken(COMMA,',',1,51)
- LexToken(QUOTE,'"',1,53)
- LexToken(INT,1,1,54)
- LexToken(NAME,'months',1,56)
- LexToken(QUOTE,'"',1,62)
- LexToken(RPAREN,')',1,63)
- >>> expression = 'H = tshift(A , 10)'
- >>> p.test(expression)
- H = tshift(A , 10)
- LexToken(NAME,'H',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(TSHIFT,'tshift',1,4)
- LexToken(LPAREN,'(',1,10)
- LexToken(NAME,'A',1,11)
- LexToken(COMMA,',',1,13)
- LexToken(INT,10,1,15)
- LexToken(RPAREN,')',1,17)
- >>> expression = 'H = if(td(A) > 10, A)'
- >>> p.test(expression)
- H = if(td(A) > 10, A)
- LexToken(NAME,'H',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(IF,'if',1,4)
- LexToken(LPAREN,'(',1,6)
- LexToken(TD,'td',1,7)
- LexToken(LPAREN,'(',1,9)
- LexToken(NAME,'A',1,10)
- LexToken(RPAREN,')',1,11)
- LexToken(GREATER,'>',1,13)
- LexToken(INT,10,1,15)
- LexToken(COMMA,',',1,17)
- LexToken(NAME,'A',1,19)
- LexToken(RPAREN,')',1,20)
- >>> expression = 'H = if(td(A) > 10, A, B)'
- >>> p.test(expression)
- H = if(td(A) > 10, A, B)
- LexToken(NAME,'H',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(IF,'if',1,4)
- LexToken(LPAREN,'(',1,6)
- LexToken(TD,'td',1,7)
- LexToken(LPAREN,'(',1,9)
- LexToken(NAME,'A',1,10)
- LexToken(RPAREN,')',1,11)
- LexToken(GREATER,'>',1,13)
- LexToken(INT,10,1,15)
- LexToken(COMMA,',',1,17)
- LexToken(NAME,'A',1,19)
- LexToken(COMMA,',',1,20)
- LexToken(NAME,'B',1,22)
- LexToken(RPAREN,')',1,23)
- >>> expression = 'I = if(equals,td(A) > 10 {equals,||} td(B) < 10, A)'
- >>> p.test(expression)
- I = if(equals,td(A) > 10 {equals,||} td(B) < 10, A)
- LexToken(NAME,'I',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(IF,'if',1,4)
- LexToken(LPAREN,'(',1,6)
- LexToken(NAME,'equals',1,7)
- LexToken(COMMA,',',1,13)
- LexToken(TD,'td',1,14)
- LexToken(LPAREN,'(',1,16)
- LexToken(NAME,'A',1,17)
- LexToken(RPAREN,')',1,18)
- LexToken(GREATER,'>',1,20)
- LexToken(INT,10,1,22)
- LexToken(T_OVERLAY_OPERATOR,'{equals,||}',1,25)
- LexToken(TD,'td',1,37)
- LexToken(LPAREN,'(',1,39)
- LexToken(NAME,'B',1,40)
- LexToken(RPAREN,')',1,41)
- LexToken(LOWER,'<',1,43)
- LexToken(INT,10,1,45)
- LexToken(COMMA,',',1,47)
- LexToken(NAME,'A',1,49)
- LexToken(RPAREN,')',1,50)
- >>> expression = 'I = if(equals,td(A) > 10 || start_day() < 10, A)'
- >>> p.test(expression)
- I = if(equals,td(A) > 10 || start_day() < 10, A)
- LexToken(NAME,'I',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(IF,'if',1,4)
- LexToken(LPAREN,'(',1,6)
- LexToken(NAME,'equals',1,7)
- LexToken(COMMA,',',1,13)
- LexToken(TD,'td',1,14)
- LexToken(LPAREN,'(',1,16)
- LexToken(NAME,'A',1,17)
- LexToken(RPAREN,')',1,18)
- LexToken(GREATER,'>',1,20)
- LexToken(INT,10,1,22)
- LexToken(OR,'|',1,25)
- LexToken(OR,'|',1,26)
- LexToken(START_DAY,'start_day',1,28)
- LexToken(LPAREN,'(',1,37)
- LexToken(RPAREN,')',1,38)
- LexToken(LOWER,'<',1,40)
- LexToken(INT,10,1,42)
- LexToken(COMMA,',',1,44)
- LexToken(NAME,'A',1,46)
- LexToken(RPAREN,')',1,47)
- >>> expression = 'E = if({equals},td(A) >= 4 {contain,&&} td(B) == 2, C : D)'
- >>> p.test(expression)
- E = if({equals},td(A) >= 4 {contain,&&} td(B) == 2, C : D)
- LexToken(NAME,'E',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(IF,'if',1,4)
- LexToken(LPAREN,'(',1,6)
- LexToken(T_REL_OPERATOR,'{equals}',1,7)
- LexToken(COMMA,',',1,15)
- LexToken(TD,'td',1,16)
- LexToken(LPAREN,'(',1,18)
- LexToken(NAME,'A',1,19)
- LexToken(RPAREN,')',1,20)
- LexToken(GREATER_EQUALS,'>=',1,22)
- LexToken(INT,4,1,25)
- LexToken(T_OVERLAY_OPERATOR,'{contain,&&}',1,27)
- LexToken(TD,'td',1,40)
- LexToken(LPAREN,'(',1,42)
- LexToken(NAME,'B',1,43)
- LexToken(RPAREN,')',1,44)
- LexToken(CEQUALS,'==',1,46)
- LexToken(INT,2,1,49)
- LexToken(COMMA,',',1,50)
- LexToken(NAME,'C',1,52)
- LexToken(T_SELECT,':',1,54)
- LexToken(NAME,'D',1,56)
- LexToken(RPAREN,')',1,57)
- >>> expression = 'F = if({equals},A {equal,#}, B, C : D)'
- >>> p.test(expression)
- F = if({equals},A {equal,#}, B, C : D)
- LexToken(NAME,'F',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(IF,'if',1,4)
- LexToken(LPAREN,'(',1,6)
- LexToken(T_REL_OPERATOR,'{equals}',1,7)
- LexToken(COMMA,',',1,15)
- LexToken(NAME,'A',1,16)
- LexToken(T_HASH_OPERATOR,'{equal,#}',1,18)
- LexToken(COMMA,',',1,27)
- LexToken(NAME,'B',1,29)
- LexToken(COMMA,',',1,30)
- LexToken(NAME,'C',1,32)
- LexToken(T_SELECT,':',1,34)
- LexToken(NAME,'D',1,36)
- LexToken(RPAREN,')',1,37)
- >>> expression = 'E = A : B ^ C : D'
- >>> p.test(expression)
- E = A : B ^ C : D
- LexToken(NAME,'E',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(NAME,'A',1,4)
- LexToken(T_SELECT,':',1,6)
- LexToken(NAME,'B',1,8)
- LexToken(XOR,'^',1,10)
- LexToken(NAME,'C',1,12)
- LexToken(T_SELECT,':',1,14)
- LexToken(NAME,'D',1,16)
- >>> expression = 'E = A : B {|^} C : D'
- >>> p.test(expression)
- E = A : B {|^} C : D
- LexToken(NAME,'E',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(NAME,'A',1,4)
- LexToken(T_SELECT,':',1,6)
- LexToken(NAME,'B',1,8)
- LexToken(T_OVERLAY_OPERATOR,'{|^}',1,10)
- LexToken(NAME,'C',1,15)
- LexToken(T_SELECT,':',1,17)
- LexToken(NAME,'D',1,19)
- >>> expression = 'E = buff_a(A, 10)'
- >>> p.test(expression)
- E = buff_a(A, 10)
- LexToken(NAME,'E',1,0)
- LexToken(EQUALS,'=',1,2)
- LexToken(BUFF_AREA,'buff_a',1,4)
- LexToken(LPAREN,'(',1,10)
- LexToken(NAME,'A',1,11)
- LexToken(COMMA,',',1,12)
- LexToken(INT,10,1,14)
- LexToken(RPAREN,')',1,16)
- >>> p = tgis.TemporalVectorAlgebraParser()
- >>> p.run = False
- >>> p.debug = True
- >>> expression = "D = A : (B !: C)"
- >>> p.parse(expression)
- B* = B !: C
- A* = A : B*
- D = A*
- >>> expression = "D = A {!:} B {during,:} C"
- >>> print(expression)
- D = A {!:} B {during,:} C
- >>> p.parse(expression)
- A* = A {!:} B
- A** = A* {during,:} C
- D = A**
- >>> expression = "D = A {:} B {during,!:} C"
- >>> print(expression)
- D = A {:} B {during,!:} C
- >>> p.parse(expression)
- A* = A {:} B
- A** = A* {during,!:} C
- D = A**
- >>> expression = "D = A {:} (B {during,!:} (C : E))"
- >>> print(expression)
- D = A {:} (B {during,!:} (C : E))
- >>> p.parse(expression)
- C* = C : E
- B* = B {during,!:} C*
- A* = A {:} B*
- D = A*
- >>> p.run = False
- >>> p.debug = False
- >>> expression = "C = test1 : test2"
- >>> print(expression)
- C = test1 : test2
- >>> p.parse(expression, 'stvds')
- >>> expression = 'D = buff_t(test1,"10 months")'
- >>> print(expression)
- D = buff_t(test1,"10 months")
- >>> p.parse(expression, 'stvds')
- >>> expression = 'E = test2 {during,:} buff_t(test1,"1 days")'
- >>> print(expression)
- E = test2 {during,:} buff_t(test1,"1 days")
- >>> p.parse(expression, 'stvds')
- >>> expression = 'F = test2 {equal,:} buff_t(test1,"1 days")'
- >>> print(expression)
- F = test2 {equal,:} buff_t(test1,"1 days")
- >>> p.parse(expression, 'stvds')
- >>> p.debug = True
- >>> expression = 'H = tsnap(test2 {during,:} buff_t(test1, "1 days"))'
- >>> p.parse(expression, 'stvds')
- test1* = buff_t( test1 , " 1 days " )
- test2* = test2 {during,:} test1*
- test2** = tsnap( test2* )
- H = test2**
- >>> expression = 'H = tshift(test2 {during,:} test1, "1 days")'
- >>> p.parse(expression, 'stvds')
- test2* = test2 {during,:} test1
- test2** = tshift( test2* , " 1 days " )
- H = test2**
- >>> expression = 'H = tshift(H, 3)'
- >>> p.parse(expression, 'stvds')
- H* = tshift( H , 3 )
- H = H*
- >>> expression = 'C = if(td(A) == 2, A)'
- >>> p.parse(expression, 'stvds')
- td(A)
- td(A) == 2
- A* = if condition True then A
- C = A*
- >>> expression = 'C = if(td(A) == 5 || start_date() >= "2010-01-01", A, B)'
- >>> p.parse(expression, 'stvds')
- td(A)
- td(A) == 5
- start_date >= "2010-01-01"
- True || True
- A* = if condition True then A else B
- C = A*
- >>> expression = 'C = if(td(A) == 5, A, B)'
- >>> p.parse(expression, 'stvds')
- td(A)
- td(A) == 5
- A* = if condition True then A else B
- C = A*
- @endcode
- """
- try:
- import ply.yacc as yacc
- except:
- pass
- import grass.pygrass.modules as pygrass
- import grass.script as grass
- from space_time_datasets import *
- from factory import *
- from open_stds import *
- import copy
- from temporal_vector_operator import *
- from temporal_algebra import *
- ##############################################################################
- class TemporalVectorAlgebraLexer(TemporalAlgebraLexer):
- """!Lexical analyzer for the GRASS GIS temporal vector algebra"""
- def __init__(self):
- TemporalAlgebraLexer.__init__(self)
- # Buffer functions from v.buffer
- vector_buff_functions = {
- 'buff_p' : 'BUFF_POINT',
- 'buff_l' : 'BUFF_LINE',
- 'buff_a' : 'BUFF_AREA',
- }
- # This is the list of token names.
- vector_tokens = (
- 'DISOR',
- 'XOR',
- 'NOT',
- 'T_OVERLAY_OPERATOR',
- )
- # Build the token list
- tokens = TemporalAlgebraLexer.tokens \
- + vector_tokens \
- + tuple(vector_buff_functions.values())
- # Regular expression rules for simple tokens
- t_DISOR = r'\+'
- t_XOR = r'\^'
- t_NOT = r'\~'
- t_T_OVERLAY_OPERATOR = r'\{([a-zA-Z\|]+[,])?([\|&+=]?[\|&+=\^\~])\}'
- # Parse symbols
- def temporal_symbol(self, t):
- # Check for reserved words
- if t.value in TemporalVectorAlgebraLexer.time_functions.keys():
- t.type = TemporalVectorAlgebraLexer.time_functions.get(t.value)
- elif t.value in TemporalVectorAlgebraLexer.datetime_functions.keys():
- t.type = TemporalVectorAlgebraLexer.datetime_functions.get(t.value)
- elif t.value in TemporalVectorAlgebraLexer.conditional_functions.keys():
- t.type = TemporalVectorAlgebraLexer.conditional_functions.get(t.value)
- elif t.value in TemporalVectorAlgebraLexer.vector_buff_functions.keys():
- t.type = TemporalVectorAlgebraLexer.vector_buff_functions.get(t.value)
- else:
- t.type = 'NAME'
- return t
- class TemporalVectorAlgebraParser(TemporalAlgebraParser):
- """The temporal algebra class"""
- # Get the tokens from the lexer class
- tokens = TemporalVectorAlgebraLexer.tokens
- # Setting equal precedence level for select and hash operations.
- precedence = (
- ('left', 'T_SELECT_OPERATOR', 'T_SELECT', 'T_NOT_SELECT'), # 1
- ('left', 'AND', 'OR', 'T_COMP_OPERATOR', 'T_OVERLAY_OPERATOR', 'DISOR', \
- 'NOT', 'XOR'), #2
- )
- def __init__(self, pid=None, run=False, debug=True, spatial = False):
- TemporalAlgebraParser.__init__(self, pid, run, debug, spatial)
- self.m_overlay = pygrass.Module('v.overlay', quiet=True, run_=False)
- self.m_rename = pygrass.Module('g.rename', quiet=True, run_=False)
- self.m_patch = pygrass.Module('v.patch', quiet=True, run_=False)
- self.m_mremove = pygrass.Module('g.mremove', quiet=True, run_=False)
- self.m_buffer = pygrass.Module('v.buffer', quiet=True, run_=False)
- def parse(self, expression, stdstype = 'strds', basename = None):
- self.lexer = TemporalVectorAlgebraLexer()
- self.lexer.build()
- self.parser = yacc.yacc(module=self, debug=self.debug)
- self.count = 0
- self.stdstype = stdstype
- self.basename = basename
- self.expression = expression
- self.parser.parse(expression)
- ######################### Temporal functions ##############################
- def remove_intermediate_vector_maps(self):
- """! Removes the intermediate vector maps.
- """
- if self.names != {}:
- namelist = self.names.values()
- max = 100
- chunklist = [namelist[i:i + max] for i in range(0, len(namelist), max)]
- for chunk in chunklist:
- stringlist = ",".join(chunk)
- if self.debug:
- print "g.mremove vect=%s"%(stringlist)
- if self.run:
- m = copy.deepcopy(self.m_mremove)
- m.inputs["vect"].value = stringlist
- m.flags["f"].value = True
- m.run()
- def eval_toperator(self, operator, comparison = False):
- """!This function evaluates a string containing temporal operations.
- @param operator String of temporal operations, e.g. {equal|during,=!:}.
- @return List of temporal relations (equal, during), the given function
- (!:) and the interval/instances (=).
- @code
- >>> import grass.temporal as tgis
- >>> tgis.init(True)
- >>> p = tgis.TemporalVectorAlgebraParser()
- >>> operator = "{equal,:}"
- >>> p.eval_toperator(operator)
- (['EQUAL'], '=', ':')
- >>> operator = "{equal|during,:}"
- >>> p.eval_toperator(operator)
- (['EQUAL', 'DURING'], '=', ':')
- >>> operator = "{equal,!:}"
- >>> p.eval_toperator(operator)
- (['EQUAL'], '=', '!:')
- >>> operator = "{equal|during,!:}"
- >>> p.eval_toperator(operator)
- (['EQUAL', 'DURING'], '=', '!:')
- >>> operator = "{equal|during,=!:}"
- >>> p.eval_toperator(operator)
- (['EQUAL', 'DURING'], '=', '!:')
- >>> operator = "{equal|during|starts,#}"
- >>> p.eval_toperator(operator)
- (['EQUAL', 'DURING', 'STARTS'], '=', '#')
- >>> operator = "{!:}"
- >>> p.eval_toperator(operator)
- (['EQUAL'], '=', '!:')
- >>> operator = "{=:}"
- >>> p.eval_toperator(operator)
- (['EQUAL'], '=', ':')
- >>> operator = "{#}"
- >>> p.eval_toperator(operator)
- (['EQUAL'], '=', '#')
- >>> operator = "{equal|during}"
- >>> p.eval_toperator(operator)
- (['EQUAL', 'DURING'], None, None)
- >>> operator = "{equal}"
- >>> p.eval_toperator(operator)
- (['EQUAL'], None, None)
- >>> operator = "{equal,||}"
- >>> p.eval_toperator(operator, True)
- (['EQUAL'], '=', '||')
- >>> operator = "{equal|during,&&}"
- >>> p.eval_toperator(operator, True)
- (['EQUAL', 'DURING'], '=', '&&')
- >>> operator = "{&}"
- >>> p.eval_toperator(operator)
- (['EQUAL'], '=', '&')
- @endcode
- """
- p = TemporalVectorOperatorParser()
- p.parse(operator, comparison)
- p.relations = [rel.upper() for rel in p.relations]
- return(p.relations, p.temporal, p.function)
- def overlay_map_extent(self, mapA, mapB, bool_op = None, temp_op = '=',
- copy = False):
- """!Compute the spatio-temporal extent of two topological related maps
- @param mapA The first map
- @param mapB The second maps
- @param bool_op The boolean operator specifying the spatial extent
- operation (intersection, union, disjoint union)
- @param temp_op The temporal operator specifying the temporal
- exntent operation (intersection, union, disjoint union)
- @param copy Specifies if the temporal extent of mapB should be
- copied to mapA
- """
- returncode = 1
- if copy:
- map_extent_temporal = mapB.get_temporal_extent()
- map_extent_spatial = mapB.get_spatial_extent()
- # Set initial map extend of new vector map.
- mapA.set_spatial_extent(map_extent_spatial)
- mapA.set_temporal_extent(map_extent_temporal)
- if "cmd_list" in dir(mapB):
- mapA.cmd_list = mapB.cmd_list
- else:
- # Calculate spatial extent for different overlay operations.
- if bool_op == 'and':
- overlay_ext = mapA.spatial_intersection(mapB)
- if overlay_ext != None:
- mapA.set_spatial_extent(overlay_ext)
- else:
- returncode = 0
- elif bool_op in ['or', 'xor']:
- overlay_ext = mapA.spatial_union(mapB)
- if overlay_ext != None:
- mapA.set_spatial_extent(overlay_ext)
- else:
- returncode = 0
- elif bool_op == 'disor':
- overlay_ext = mapA.spatial_disjoint_union(mapB)
- if overlay_ext != None:
- mapA.set_spatial_extent(overlay_ext)
- else:
- returncode = 0
- # Conditional append of command list.
- if "cmd_list" in dir(mapA) and "cmd_list" in dir(mapB):
- mapA.cmd_list = mapA.cmd_list + mapB.cmd_list
- elif "cmd_list" not in dir(mapA) and "cmd_list" in dir(mapB):
- mapA.cmd_list = mapB.cmd_list
- # Calculate temporal extent for different temporal operators.
- if temp_op == '&':
- temp_ext = mapA.temporal_intersection(mapB)
- if temp_ext != None:
- mapA.set_temporal_extent(temp_ext)
- else:
- returncode = 0
- elif temp_op == '|':
- temp_ext = mapA.temporal_union(mapB)
- if temp_ext != None:
- mapA.set_temporal_extent(temp_ext)
- else:
- returncode = 0
- elif temp_op == '+':
- temp_ext = mapA.temporal_disjoint_union(mapB)
- if temp_ext != None:
- mapA.set_temporal_extent(temp_ext)
- else:
- returncode = 0
- return(returncode)
- ###########################################################################
- def p_statement_assign(self, t):
- # The expression should always return a list of maps.
- """
- statement : stds EQUALS expr
- """
- # Execute the command lists
- if self.run:
- if isinstance(t[3], list):
- num = len(t[3])
- count = 0
- returncode = 0
- register_list = []
- for i in range(num):
- # Check if resultmap names exist in GRASS database.
- vectorname = self.basename + "_" + str(i)
- vectormap = VectorDataset(vectorname + "@" + get_current_mapset())
- if vectormap.map_exists() and grass.overwrite() == False:
- self.msgr.fatal(_("Error vector maps with basename %s exist. "
- "Use --o flag to overwrite existing file") \
- %(vectorname))
- for map_i in t[3]:
- if "cmd_list" in dir(map_i):
- # Execute command list.
- for cmd in map_i.cmd_list:
- try:
- # We need to check if the input maps have areas in case of v.overlay
- # otherwise v.overlay will break
- if cmd.name == "v.overlay":
- for name in (cmd.inputs["ainput"].value,
- cmd.inputs["binput"].value):
- #self.msgr.message("Check if map <" + name + "> exists")
- if name.find("@") < 0:
- name = name + "@" + get_current_mapset()
- tmp_map = map_i.get_new_instance(name)
- if not tmp_map.map_exists():
- raise Exception
- #self.msgr.message("Check if map <" + name + "> has areas")
- tmp_map.load()
- if tmp_map.metadata.get_number_of_areas() == 0:
- raise Exception
- except Exception:
- returncode = 1
- break
- # run the command
- # print the command that will be executed
- self.msgr.message("Run command:\n" + cmd.get_bash())
- cmd.run()
- if cmd.popen.returncode != 0:
- self.msgr.fatal(_("Error starting %s : \n%s") \
- %(cmd.get_bash(), \
- cmd.popen.stderr))
- mapname = cmd.outputs['output'].value
- if mapname.find("@") >= 0:
- map_test = map_i.get_new_instance(mapname)
- else:
- map_test = map_i.get_new_instance(mapname + "@" + self.mapset)
- if not map_test.map_exists():
- returncode = 1
- break
- if returncode == 0:
- # We remove the invalid vector name from the remove list.
- if self.names.has_key(map_i.get_name()):
- self.names.pop(map_i.get_name())
- mapset = map_i.get_mapset()
- # Change map name to given basename.
- newident = self.basename + "_" + str(count)
- m = copy.deepcopy(self.m_rename)
- m.inputs["vect"].value = (map_i.get_name(),newident)
- m.flags["overwrite"].value = grass.overwrite()
- m.run()
- #m(vect = (map_i.get_name(),newident), \
- # overwrite = grass.overwrite)
- map_i.set_id(newident + "@" + mapset)
- count += 1
- register_list.append(map_i)
- else:
- register_list.append(map_i)
- if len(register_list) > 0:
- # Open connection to temporal database.
- dbif, connected = init_dbif(dbif=self.dbif)
- # Create result space time dataset.
- resultstds = open_new_space_time_dataset(t[1], self.stdstype, \
- 'absolute', t[1], t[1], \
- "temporal vector algebra", dbif=dbif,
- overwrite = grass.overwrite())
- for map_i in register_list:
- # Check if modules should be executed from command list.
- if "cmd_list" in dir(map_i):
- # Get meta data from grass database.
- map_i.load()
- if map_i.is_in_db(dbif=dbif) and grass.overwrite():
- # Update map in temporal database.
- map_i.update_all(dbif=dbif)
- elif map_i.is_in_db(dbif=dbif) and grass.overwrite() == False:
- # Raise error if map exists and no overwrite flag is given.
- self.msgr.fatal(_("Error vector map %s exist in temporal database. "
- "Use overwrite flag. : \n%s") \
- %(map_i.get_map_id(), cmd.popen.stderr))
- else:
- # Insert map into temporal database.
- map_i.insert(dbif=dbif)
- else:
- #Get metadata from temporal database.
- map_i.select(dbif=dbif)
- # Register map in result space time dataset.
- resultstds.register_map(map_i, dbif=dbif)
- #count += 1
- #if count % 10 == 0:
- # grass.percent(count, num, 1)
- resultstds.update_from_registered_maps(dbif=dbif)
- if connected:
- dbif.close()
- self.remove_intermediate_vector_maps()
- t[0] = register_list
- if self.debug:
- if isinstance(t[3], list):
- for map_i in t[3]:
- print(map_i.get_id())
- else:
- print(t[1] + " = " + str(t[3]))
- t[0] = t[3]
- def p_overlay_operation(self, t):
- """
- expr : stds AND stds
- | expr AND stds
- | stds AND expr
- | expr AND expr
- | stds OR stds
- | expr OR stds
- | stds OR expr
- | expr OR expr
- | stds XOR stds
- | expr XOR stds
- | stds XOR expr
- | expr XOR expr
- | stds NOT stds
- | expr NOT stds
- | stds NOT expr
- | expr NOT expr
- | stds DISOR stds
- | expr DISOR stds
- | stds DISOR expr
- | expr DISOR expr
- """
- # Check input stds.
- maplistA = self.check_stds(t[1])
- maplistB = self.check_stds(t[3])
- if self.run:
- t[0] = self.create_overlay_operations(maplistA, maplistB, ("EQUAL",), "=", t[2])
- if self.debug:
- t[0] = t[1]
- def p_overlay_operation_relation(self, t):
- """
- expr : stds T_OVERLAY_OPERATOR stds
- | expr T_OVERLAY_OPERATOR stds
- | stds T_OVERLAY_OPERATOR expr
- | expr T_OVERLAY_OPERATOR expr
- """
- # Check input stds.
- maplistA = self.check_stds(t[1])
- maplistB = self.check_stds(t[3])
- relations, temporal, function= self.eval_toperator(t[2])
- if self.run:
- t[0] = self.create_overlay_operations(maplistA, maplistB, relations, temporal, function)
- if self.debug:
- t[0] = t[1]
- def create_overlay_operations(self, maplistA, maplistB, relations, temporal, function):
- """!Create the spatial overlay operation commad list
- @param maplistA A list of map objects
- @param maplistB A list of map objects
- @param relations The temporal relationships that must be fullfilled as list of strings
- ("EQUAL", "DURING", ...)
- @param temporal The temporal operator as string "=" or "&", ...
- @param function The spatial overlay operations as string "&", "|", ...
- @return Return the list of maps with overlay commands
- """
- topolist = self.get_temporal_topo_list(maplistA, maplistB, topolist = relations)
- # Select operation name.
- if function == "&":
- opname = "and"
- elif function == "|":
- opname = "or"
- elif function == "^":
- opname = "xor"
- elif function == "~":
- opname = "not"
- elif function == "+":
- opname = "disor"
- if self.run:
- resultlist = []
- for map_i in topolist:
- # Generate an intermediate name for the result map list.
- name = self.generate_map_name()
- # Get mapset input.
- mapset = get_current_mapset()
- # Check for mapset in given stds input.
- mapname = name + "@" + mapset
- # Create new map based on the related map list.
- map_new = map_i.get_new_instance(mapname)
- # Set initial map extend of new vector map.
- self.overlay_map_extent(map_new, map_i, bool_op = opname, copy = True)
- # Set first input for overlay module.
- mapainput = map_i.get_id()
- # Loop over temporal related maps and create overlay modules.
- tbrelations = map_i.get_temporal_relations()
- count = 0
- for topo in relations:
- if topo in tbrelations.keys():
- for map_j in (tbrelations[topo]):
- # Create overlayed map extent.
- returncode = self.overlay_map_extent(map_new, map_j, opname, \
- temp_op = temporal)
- # Stop the loop if no temporal or spatial relationship exist.
- if returncode == 0:
- break
- if count == 0:
- # Set map name.
- name = map_new.get_id()
- else:
- # Generate an intermediate name
- name = self.generate_map_name()
- map_new.set_id(name + "@" + mapset)
- # Set second input for overlay module.
- mapbinput = map_j.get_id()
- # Create module command in PyGRASS for v.overlay and v.patch.
- if opname != "disor":
- m = copy.deepcopy(self.m_overlay)
- m.run_ = False
- m.inputs["operator"].value = opname
- m.inputs["ainput"].value = str(mapainput)
- m.inputs["binput"].value = str(mapbinput)
- m.outputs["output"].value = name
- m.flags["overwrite"].value = grass.overwrite()
- else:
- patchinput = str(mapainput) + ',' + str(mapbinput)
- m = copy.deepcopy(self.m_patch)
- m.run_ = False
- m.inputs["input"].value = patchinput
- m.outputs["output"].value = name
- m.flags["overwrite"].value = grass.overwrite()
- # Conditional append of module command.
- if "cmd_list" in dir(map_new):
- map_new.cmd_list.append(m)
- else:
- map_new.cmd_list = [m]
- # Set new map name to temporary map name.
- mapainput = name
- count += 1
- if returncode == 0:
- break
- # Append map to result map list.
- if returncode == 1:
- resultlist.append(map_new)
- return resultlist
- def p_buffer_operation(self,t):
- """
- expr : buff_function LPAREN stds COMMA number RPAREN
- | buff_function LPAREN expr COMMA number RPAREN
- """
- if self.run:
- # Check input stds.
- bufflist = self.check_stds(t[3])
- # Create empty result list.
- resultlist = []
- for map_i in bufflist:
- # Generate an intermediate name
- name = self.generate_map_name()
- # Get mapset input.
- mapset = get_current_mapset()
- # Check for mapset in given stds input.
- mapname = name + "@" + mapset
- # Create new map based on the related map list.
- map_new = map_i.get_new_instance(mapname)
- # Set initial map extend of new vector map.
- self.overlay_map_extent(map_new, map_i, copy = True)
- # Change spatial extent based on buffer size.
- map_new.spatial_buffer(float(t[5]))
- # Check buff type.
- if t[1] == "buff_p":
- buff_type = "point"
- elif t[1] == "buff_l":
- buff_type = "line"
- elif t[1] == "buff_a":
- buff_type = "area"
- m = copy.deepcopy(self.m_buffer)
- m.run_ = False
- m.inputs["type"].value = buff_type
- m.inputs["input"].value = str(map_i.get_id())
- m.inputs["distance"].value = float(t[5])
- m.outputs["output"].value = name
- m.flags["overwrite"].value = grass.overwrite()
- # Conditional append of module command.
- if "cmd_list" in dir(map_new):
- map_new.cmd_list.append(m)
- else:
- map_new.cmd_list = [m]
- resultlist.append(map_new)
- t[0] = resultlist
- if self.debug:
- pass
- def p_buff_function(self, t):
- """buff_function : BUFF_POINT
- | BUFF_LINE
- | BUFF_AREA
- """
- t[0] = t[1]
- # Handle errors.
- def p_error(self, t):
- raise SyntaxError("syntax error on line %d near '%s' expression '%s'" %
- (t.lineno, t.value, self.expression))
- ###############################################################################
- if __name__ == "__main__":
- import doctest
- doctest.testmod()
|