r.tileset.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389
  1. #!/usr/bin/env python
  2. ############################################################################
  3. #
  4. # MODULE: r.tileset
  5. #
  6. # AUTHOR(S): Cedric Shock
  7. # Updated for GRASS7 by Martin Landa, 2009
  8. #
  9. # PURPOSE: To produce tilings of regions in other projections.
  10. #
  11. # COPYRIGHT: (C) 2006-2009 by Cedric Shoc, Martin Landa, and GRASS development team
  12. #
  13. # This program is free software under the GNU General
  14. # Public License (>=v2). Read the file COPYING that
  15. # comes with GRASS for details.
  16. #
  17. #############################################################################
  18. # Bugs:
  19. # Does not know about meridians in projections. However, unlike the usual
  20. # hack used to find meridians, this code is perfectly happy with arbitrary
  21. # rotations and flips
  22. # The following are planned to be fixed in a future version, if it turns out
  23. # to be necessary for someone:
  24. # Does not generate optimal tilings. This means that between an appropriate
  25. # projection for a region and latitude longitude projection, in the
  26. # degenerate case, it may create tiles demanding up to twice the necessary
  27. # information. Requesting data from cylindrical projections near their poles
  28. # results in divergence. You really don't want to use source data from
  29. # someone who put it in a cylindrical projection near a pole, do you?
  30. # Not generating "optimal" tilings has another side effect; the sanity
  31. # of the destination region will not carry over to generating tiles of
  32. # realistic aspect ratio. This might be a problem for some WMS servers
  33. # presenting data in a highly inappropriate projection. Do you really
  34. # want their data?
  35. #%module
  36. #% description: Produces tilings of the source projection for use in the destination region and projection.
  37. #% keywords: raster
  38. #% keywords: tiling
  39. #%end
  40. #%flag
  41. #% key: g
  42. #% description: Produces shell script output
  43. #%end
  44. #%flag
  45. #% key: w
  46. #% description: Produces web map server query string output
  47. #%end
  48. #%option
  49. #% key: region
  50. #% type: string
  51. #% description: Name of region to use instead of current region for bounds and resolution
  52. #%end
  53. #%option
  54. #% key: sourceproj
  55. #% type: string
  56. #% description: Source projection
  57. #% required : yes
  58. #%end
  59. #%option
  60. #% key: sourcescale
  61. #% type: string
  62. #% description: Conversion factor from units to meters in source projection
  63. #% answer : 1
  64. #%end
  65. #%option
  66. #% key: destproj
  67. #% type: string
  68. #% description: Destination projection, defaults to this location's projection
  69. #% required : no
  70. #%end
  71. #%option
  72. #% key: destscale
  73. #% type: string
  74. #% description: Conversion factor from units to meters in source projection
  75. #% required : no
  76. #%end
  77. #%option
  78. #% key: maxcols
  79. #% type: integer
  80. #% description: Maximum number of columns for a tile in the source projection
  81. #% answer: 1024
  82. #%end
  83. #%option
  84. #% key: maxrows
  85. #% type: integer
  86. #% description: Maximum number of rows for a tile in the source projection
  87. #% answer: 1024
  88. #%end
  89. #%option
  90. #% key: overlap
  91. #% type: integer
  92. #% description: Number of cells tiles should overlap in each direction
  93. #% answer: 0
  94. #%end
  95. #%option G_OPT_F_SEP
  96. #% description: Output field separator
  97. #%end
  98. # Data structures used in this program:
  99. # A bounding box:
  100. # 0 -> left, 1-> bottom, 2->right, 3-> top
  101. # A border:
  102. # An array of points indexed by 0 for "x" and 4 for "y" + by number 0, 1, 2, and 3
  103. # A reprojector [0] is name of source projection, [1] is name of destination
  104. # A projection - [0] is proj.4 text, [1] is scale
  105. import sys
  106. import subprocess
  107. import tempfile
  108. import math
  109. from grass.script.utils import separator
  110. from grass.script import core as grass
  111. def bboxToPoints(bbox):
  112. """Make points that are the corners of a bounding box"""
  113. points = []
  114. points.append((bbox['w'], bbox['s']))
  115. points.append((bbox['w'], bbox['n']))
  116. points.append((bbox['e'], bbox['n']))
  117. points.append((bbox['e'], bbox['s']))
  118. return points
  119. def pointsToBbox(points):
  120. bbox = {}
  121. min_x = min_y = max_x = max_y = None
  122. for point in points:
  123. if not min_x:
  124. min_x = max_x = point[0]
  125. if not min_y:
  126. min_y = max_y = point[1]
  127. if min_x > point[0]:
  128. min_x = point[0]
  129. if max_x < point[0]:
  130. max_x = point[0]
  131. if min_y > point[1]:
  132. min_y = point[1]
  133. if max_y < point[1]:
  134. max_y = point[1]
  135. bbox['n'] = max_y
  136. bbox['s'] = min_y
  137. bbox['w'] = min_x
  138. bbox['e'] = max_x
  139. return bbox
  140. def project(file, source, dest):
  141. """Projects point (x, y) using projector"""
  142. points = []
  143. ret = grass.read_command('m.proj',
  144. quiet = True,
  145. flags = 'd',
  146. proj_in = source['proj'],
  147. proj_out = dest['proj'],
  148. sep = ';',
  149. input = file)
  150. if not ret:
  151. grass.fatal(cs2cs + ' failed')
  152. for line in ret.splitlines():
  153. p_x2, p_y2, p_z2 = map(float, line.split(';'))
  154. points.append((p_x2 / dest['scale'], p_y2 / dest['scale']))
  155. return points
  156. def projectPoints(points, source, dest):
  157. """Projects a list of points"""
  158. dest_points = []
  159. input = tempfile.NamedTemporaryFile(mode="wt")
  160. for point in points:
  161. input.file.write('%f;%f\n' % \
  162. (point[0] * source['scale'],
  163. point[1] * source['scale']))
  164. input.file.flush()
  165. dest_points = project(input.name, source, dest)
  166. return dest_points
  167. def sideLengths(points, xmetric, ymetric):
  168. """Find the length of sides of a set of points from one to the next"""
  169. ret = []
  170. for i in range(len(points)):
  171. x1, y1 = points[i]
  172. j = i + 1
  173. if j >= len(points):
  174. j = 0
  175. sl_x = (points[j][0] - points[i][0]) * xmetric
  176. sl_y = (points[j][1] - points[i][1]) * ymetric
  177. sl_d = math.sqrt(sl_x * sl_x + sl_y * sl_y)
  178. ret.append(sl_d)
  179. return { 'x' : (ret[1], ret[3]),
  180. 'y' : (ret[0], ret[2]) }
  181. def bboxesIntersect(bbox_1, bbox_2):
  182. """Determine if two bounding boxes intersect"""
  183. bi_a1 = (bbox_1['w'], bbox_1['s'])
  184. bi_a2 = (bbox_1['e'], bbox_1['n'])
  185. bi_b1 = (bbox_2['w'], bbox_2['s'])
  186. bi_b2 = (bbox_2['e'], bbox_2['n'])
  187. cin = [False, False]
  188. for i in (0, 1):
  189. if (bi_a1[i] <= bi_b1[i] and bi_a2[i] >= bi_b1[i]) or \
  190. (bi_a1[i] <= bi_b1[i] and bi_a2[i] >= bi_b2[i]) or \
  191. (bi_b1[i] <= bi_a1[i] and bi_b2[i] >= bi_a1[i]) or \
  192. (bi_b1[i] <= bi_a1[i] and bi_b2[i] >= bi_a2[i]):
  193. cin[i] = True
  194. if cin[0] and cin[1]:
  195. return True
  196. return False
  197. def main():
  198. # Take into account those extra pixels we'll be a addin'
  199. max_cols = int(options['maxcols']) - int(options['overlap'])
  200. max_rows = int(options['maxrows']) - int(options['overlap'])
  201. # destination projection
  202. if not options['destproj']:
  203. dest_proj = grass.read_command('g.proj',
  204. quiet = True,
  205. flags = 'jf').rstrip('\n')
  206. if not dest_proj:
  207. grass.fatal(_('g.proj failed'))
  208. else:
  209. dest_proj = options['destproj']
  210. grass.debug("Getting destination projection -> '%s'" % dest_proj)
  211. # projection scale
  212. if not options['destscale']:
  213. ret = grass.parse_command('g.proj',
  214. quiet = True,
  215. flags = 'j')
  216. if not ret:
  217. grass.fatal(_('g.proj failed'))
  218. if '+to_meter' in ret:
  219. dest_scale = ret['+to_meter'].strip()
  220. else:
  221. grass.warning(_("Scale (%s) not found, assuming '1'") % '+to_meter')
  222. dest_scale = '1'
  223. else:
  224. dest_scale = options['destscale']
  225. grass.debug('Getting destination projection scale -> %s' % dest_scale)
  226. # set up the projections
  227. srs_source = { 'proj' : options['sourceproj'],
  228. 'scale' : float(options['sourcescale']) }
  229. srs_dest = { 'proj' : dest_proj,
  230. 'scale' : float(dest_scale) }
  231. if options['region']:
  232. grass.run_command('g.region',
  233. quiet = True,
  234. region = options['region'])
  235. dest_bbox = grass.region()
  236. grass.debug('Getting destination region')
  237. # output field separator
  238. fs = separator(options['separator'])
  239. # project the destination region into the source:
  240. grass.verbose('Projecting destination region into source...')
  241. dest_bbox_points = bboxToPoints(dest_bbox)
  242. dest_bbox_source_points = projectPoints(dest_bbox_points,
  243. source = srs_dest,
  244. dest = srs_source)
  245. source_bbox = pointsToBbox(dest_bbox_source_points)
  246. grass.verbose('Projecting source bounding box into destination...')
  247. source_bbox_points = bboxToPoints(source_bbox)
  248. source_bbox_dest_points = projectPoints(source_bbox_points,
  249. source = srs_source,
  250. dest = srs_dest)
  251. x_metric = 1 / dest_bbox['ewres']
  252. y_metric = 1 / dest_bbox['nsres']
  253. grass.verbose('Computing length of sides of source bounding box...')
  254. source_bbox_dest_lengths = sideLengths(source_bbox_dest_points,
  255. x_metric, y_metric)
  256. # Find the skewedness of the two directions.
  257. # Define it to be greater than one
  258. # In the direction (x or y) in which the world is least skewed (ie north south in lat long)
  259. # Divide the world into strips. These strips are as big as possible contrained by max_
  260. # In the other direction do the same thing.
  261. # Theres some recomputation of the size of the world that's got to come in here somewhere.
  262. # For now, however, we are going to go ahead and request more data than is necessary.
  263. # For small regions far from the critical areas of projections this makes very little difference
  264. # in the amount of data gotten.
  265. # We can make this efficient for big regions or regions near critical points later.
  266. bigger = []
  267. bigger.append(max(source_bbox_dest_lengths['x']))
  268. bigger.append(max(source_bbox_dest_lengths['y']))
  269. maxdim = (max_cols, max_rows)
  270. # Compute the number and size of tiles to use in each direction
  271. # I'm making fairly even sized tiles
  272. # They differer from each other in height and width only by one cell
  273. # I'm going to make the numbers all simpler and add this extra cell to
  274. # every tile.
  275. grass.message(_('Computing tiling...'))
  276. tiles = [-1, -1]
  277. tile_base_size = [-1, -1]
  278. tiles_extra_1 = [-1, -1]
  279. tile_size = [-1, -1]
  280. tileset_size = [-1, -1]
  281. tile_size_overlap = [-1, -1]
  282. for i in range(len(bigger)):
  283. # make these into integers.
  284. # round up
  285. bigger[i] = int(bigger[i] + 1)
  286. tiles[i] = int((bigger[i] / maxdim[i]) + 1)
  287. tile_size[i] = tile_base_size[i] = int(bigger[i] / tiles[i])
  288. tiles_extra_1[i] = int(bigger[i] % tiles[i])
  289. # This is adding the extra pixel (remainder) to all of the tiles:
  290. if tiles_extra_1[i] > 0:
  291. tile_size[i] = tile_base_size[i] + 1
  292. tileset_size[i] = int(tile_size[i] * tiles[i])
  293. # Add overlap to tiles (doesn't effect tileset_size
  294. tile_size_overlap[i] = tile_size[i] + int(options['overlap'])
  295. grass.verbose("There will be %d by %d tiles each %d by %d cells" % \
  296. (tiles[0], tiles[1], tile_size[0], tile_size[1]))
  297. ximax = tiles[0]
  298. yimax = tiles[1]
  299. min_x = source_bbox['w']
  300. min_y = source_bbox['s']
  301. max_x = source_bbox['e']
  302. max_y = source_bbox['n']
  303. span_x = (max_x - min_x)
  304. span_y = (max_y - min_y)
  305. xi = 0
  306. tile_bbox = { 'w' : -1, 's': -1, 'e' : -1, 'n' : -1 }
  307. while xi < ximax:
  308. tile_bbox['w'] = float(min_x) + (float(xi) * float(tile_size[0]) / float(tileset_size[0])) * float(span_x)
  309. tile_bbox['e'] = float(min_x) + (float(xi + 1) * float(tile_size_overlap[0]) / float(tileset_size[0])) * float(span_x)
  310. yi = 0
  311. while yi < yimax:
  312. tile_bbox['s'] = float(min_y) + (float(yi) * float(tile_size[1]) / float(tileset_size[1])) * float(span_y)
  313. tile_bbox['n'] = float(min_y) + (float(yi + 1) * float(tile_size_overlap[1]) / float(tileset_size[1])) * float(span_y)
  314. tile_bbox_points = bboxToPoints(tile_bbox)
  315. tile_dest_bbox_points = projectPoints(tile_bbox_points,
  316. source = srs_source,
  317. dest = srs_dest)
  318. tile_dest_bbox = pointsToBbox(tile_dest_bbox_points)
  319. if bboxesIntersect(tile_dest_bbox, dest_bbox):
  320. if flags['w']:
  321. print "bbox=%s,%s,%s,%s&width=%s&height=%s" % \
  322. (tile_bbox['w'], tile_bbox['s'], tile_bbox['e'], tile_bbox['n'],
  323. tile_size_overlap[0], tile_size_overlap[1])
  324. elif flags['g']:
  325. print "w=%s;s=%s;e=%s;n=%s;cols=%s;rows=%s" % \
  326. (tile_bbox['w'], tile_bbox['s'], tile_bbox['e'], tile_bbox['n'],
  327. tile_size_overlap[0], tile_size_overlap[1])
  328. else:
  329. print "%s%s%s%s%s%s%s%s%s%s%s" % \
  330. (tile_bbox['w'], fs, tile_bbox['s'], fs, tile_bbox['e'], fs, tile_bbox['n'], fs,
  331. tile_size_overlap[0], fs, tile_size_overlap[1])
  332. yi += 1
  333. xi += 1
  334. if __name__ == "__main__":
  335. cs2cs = 'cs2cs'
  336. options, flags = grass.parser()
  337. sys.exit(main())