123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389 |
- #!/usr/bin/env python
- ############################################################################
- #
- # MODULE: r.tileset
- #
- # AUTHOR(S): Cedric Shock
- # Updated for GRASS7 by Martin Landa, 2009
- #
- # PURPOSE: To produce tilings of regions in other projections.
- #
- # COPYRIGHT: (C) 2006-2009 by Cedric Shoc, Martin Landa, and GRASS development team
- #
- # This program is free software under the GNU General
- # Public License (>=v2). Read the file COPYING that
- # comes with GRASS for details.
- #
- #############################################################################
- # Bugs:
- # Does not know about meridians in projections. However, unlike the usual
- # hack used to find meridians, this code is perfectly happy with arbitrary
- # rotations and flips
- # The following are planned to be fixed in a future version, if it turns out
- # to be necessary for someone:
- # Does not generate optimal tilings. This means that between an appropriate
- # projection for a region and latitude longitude projection, in the
- # degenerate case, it may create tiles demanding up to twice the necessary
- # information. Requesting data from cylindrical projections near their poles
- # results in divergence. You really don't want to use source data from
- # someone who put it in a cylindrical projection near a pole, do you?
- # Not generating "optimal" tilings has another side effect; the sanity
- # of the destination region will not carry over to generating tiles of
- # realistic aspect ratio. This might be a problem for some WMS servers
- # presenting data in a highly inappropriate projection. Do you really
- # want their data?
- #%module
- #% description: Produces tilings of the source projection for use in the destination region and projection.
- #% keywords: raster
- #% keywords: tiling
- #%end
- #%flag
- #% key: g
- #% description: Produces shell script output
- #%end
- #%flag
- #% key: w
- #% description: Produces web map server query string output
- #%end
- #%option
- #% key: region
- #% type: string
- #% description: Name of region to use instead of current region for bounds and resolution
- #%end
- #%option
- #% key: sourceproj
- #% type: string
- #% description: Source projection
- #% required : yes
- #%end
- #%option
- #% key: sourcescale
- #% type: string
- #% description: Conversion factor from units to meters in source projection
- #% answer : 1
- #%end
- #%option
- #% key: destproj
- #% type: string
- #% description: Destination projection, defaults to this location's projection
- #% required : no
- #%end
- #%option
- #% key: destscale
- #% type: string
- #% description: Conversion factor from units to meters in source projection
- #% required : no
- #%end
- #%option
- #% key: maxcols
- #% type: integer
- #% description: Maximum number of columns for a tile in the source projection
- #% answer: 1024
- #%end
- #%option
- #% key: maxrows
- #% type: integer
- #% description: Maximum number of rows for a tile in the source projection
- #% answer: 1024
- #%end
- #%option
- #% key: overlap
- #% type: integer
- #% description: Number of cells tiles should overlap in each direction
- #% answer: 0
- #%end
- #%option G_OPT_F_SEP
- #% description: Output field separator
- #%end
- # Data structures used in this program:
- # A bounding box:
- # 0 -> left, 1-> bottom, 2->right, 3-> top
- # A border:
- # An array of points indexed by 0 for "x" and 4 for "y" + by number 0, 1, 2, and 3
- # A reprojector [0] is name of source projection, [1] is name of destination
- # A projection - [0] is proj.4 text, [1] is scale
- import sys
- import subprocess
- import tempfile
- import math
- from grass.script.utils import separator
- from grass.script import core as grass
- def bboxToPoints(bbox):
- """Make points that are the corners of a bounding box"""
- points = []
- points.append((bbox['w'], bbox['s']))
- points.append((bbox['w'], bbox['n']))
- points.append((bbox['e'], bbox['n']))
- points.append((bbox['e'], bbox['s']))
-
- return points
- def pointsToBbox(points):
- bbox = {}
- min_x = min_y = max_x = max_y = None
- for point in points:
- if not min_x:
- min_x = max_x = point[0]
- if not min_y:
- min_y = max_y = point[1]
-
- if min_x > point[0]:
- min_x = point[0]
- if max_x < point[0]:
- max_x = point[0]
- if min_y > point[1]:
- min_y = point[1]
- if max_y < point[1]:
- max_y = point[1]
-
- bbox['n'] = max_y
- bbox['s'] = min_y
- bbox['w'] = min_x
- bbox['e'] = max_x
-
- return bbox
- def project(file, source, dest):
- """Projects point (x, y) using projector"""
- points = []
- ret = grass.read_command('m.proj',
- quiet = True,
- flags = 'd',
- proj_in = source['proj'],
- proj_out = dest['proj'],
- sep = ';',
- input = file)
-
- if not ret:
- grass.fatal(cs2cs + ' failed')
-
- for line in ret.splitlines():
- p_x2, p_y2, p_z2 = map(float, line.split(';'))
- points.append((p_x2 / dest['scale'], p_y2 / dest['scale']))
-
- return points
-
- def projectPoints(points, source, dest):
- """Projects a list of points"""
- dest_points = []
-
- input = tempfile.NamedTemporaryFile(mode="wt")
- for point in points:
- input.file.write('%f;%f\n' % \
- (point[0] * source['scale'],
- point[1] * source['scale']))
- input.file.flush()
-
- dest_points = project(input.name, source, dest)
-
- return dest_points
- def sideLengths(points, xmetric, ymetric):
- """Find the length of sides of a set of points from one to the next"""
- ret = []
- for i in range(len(points)):
- x1, y1 = points[i]
- j = i + 1
- if j >= len(points):
- j = 0
- sl_x = (points[j][0] - points[i][0]) * xmetric
- sl_y = (points[j][1] - points[i][1]) * ymetric
- sl_d = math.sqrt(sl_x * sl_x + sl_y * sl_y)
- ret.append(sl_d)
-
- return { 'x' : (ret[1], ret[3]),
- 'y' : (ret[0], ret[2]) }
- def bboxesIntersect(bbox_1, bbox_2):
- """Determine if two bounding boxes intersect"""
- bi_a1 = (bbox_1['w'], bbox_1['s'])
- bi_a2 = (bbox_1['e'], bbox_1['n'])
- bi_b1 = (bbox_2['w'], bbox_2['s'])
- bi_b2 = (bbox_2['e'], bbox_2['n'])
- cin = [False, False]
- for i in (0, 1):
- if (bi_a1[i] <= bi_b1[i] and bi_a2[i] >= bi_b1[i]) or \
- (bi_a1[i] <= bi_b1[i] and bi_a2[i] >= bi_b2[i]) or \
- (bi_b1[i] <= bi_a1[i] and bi_b2[i] >= bi_a1[i]) or \
- (bi_b1[i] <= bi_a1[i] and bi_b2[i] >= bi_a2[i]):
- cin[i] = True
-
- if cin[0] and cin[1]:
- return True
-
- return False
- def main():
- # Take into account those extra pixels we'll be a addin'
- max_cols = int(options['maxcols']) - int(options['overlap'])
- max_rows = int(options['maxrows']) - int(options['overlap'])
-
- # destination projection
- if not options['destproj']:
- dest_proj = grass.read_command('g.proj',
- quiet = True,
- flags = 'jf').rstrip('\n')
- if not dest_proj:
- grass.fatal(_('g.proj failed'))
- else:
- dest_proj = options['destproj']
- grass.debug("Getting destination projection -> '%s'" % dest_proj)
-
- # projection scale
- if not options['destscale']:
- ret = grass.parse_command('g.proj',
- quiet = True,
- flags = 'j')
- if not ret:
- grass.fatal(_('g.proj failed'))
- if '+to_meter' in ret:
- dest_scale = ret['+to_meter'].strip()
- else:
- grass.warning(_("Scale (%s) not found, assuming '1'") % '+to_meter')
- dest_scale = '1'
- else:
- dest_scale = options['destscale']
- grass.debug('Getting destination projection scale -> %s' % dest_scale)
-
- # set up the projections
- srs_source = { 'proj' : options['sourceproj'],
- 'scale' : float(options['sourcescale']) }
- srs_dest = { 'proj' : dest_proj,
- 'scale' : float(dest_scale) }
-
- if options['region']:
- grass.run_command('g.region',
- quiet = True,
- region = options['region'])
- dest_bbox = grass.region()
- grass.debug('Getting destination region')
- # output field separator
- fs = separator(options['separator'])
- # project the destination region into the source:
- grass.verbose('Projecting destination region into source...')
- dest_bbox_points = bboxToPoints(dest_bbox)
-
- dest_bbox_source_points = projectPoints(dest_bbox_points,
- source = srs_dest,
- dest = srs_source)
-
- source_bbox = pointsToBbox(dest_bbox_source_points)
-
- grass.verbose('Projecting source bounding box into destination...')
-
- source_bbox_points = bboxToPoints(source_bbox)
-
- source_bbox_dest_points = projectPoints(source_bbox_points,
- source = srs_source,
- dest = srs_dest)
-
- x_metric = 1 / dest_bbox['ewres']
- y_metric = 1 / dest_bbox['nsres']
-
- grass.verbose('Computing length of sides of source bounding box...')
-
- source_bbox_dest_lengths = sideLengths(source_bbox_dest_points,
- x_metric, y_metric)
-
- # Find the skewedness of the two directions.
- # Define it to be greater than one
- # In the direction (x or y) in which the world is least skewed (ie north south in lat long)
- # Divide the world into strips. These strips are as big as possible contrained by max_
- # In the other direction do the same thing.
- # Theres some recomputation of the size of the world that's got to come in here somewhere.
-
- # For now, however, we are going to go ahead and request more data than is necessary.
- # For small regions far from the critical areas of projections this makes very little difference
- # in the amount of data gotten.
- # We can make this efficient for big regions or regions near critical points later.
-
- bigger = []
- bigger.append(max(source_bbox_dest_lengths['x']))
- bigger.append(max(source_bbox_dest_lengths['y']))
- maxdim = (max_cols, max_rows)
-
- # Compute the number and size of tiles to use in each direction
- # I'm making fairly even sized tiles
- # They differer from each other in height and width only by one cell
- # I'm going to make the numbers all simpler and add this extra cell to
- # every tile.
-
- grass.message(_('Computing tiling...'))
- tiles = [-1, -1]
- tile_base_size = [-1, -1]
- tiles_extra_1 = [-1, -1]
- tile_size = [-1, -1]
- tileset_size = [-1, -1]
- tile_size_overlap = [-1, -1]
- for i in range(len(bigger)):
- # make these into integers.
- # round up
- bigger[i] = int(bigger[i] + 1)
- tiles[i] = int((bigger[i] / maxdim[i]) + 1)
- tile_size[i] = tile_base_size[i] = int(bigger[i] / tiles[i])
- tiles_extra_1[i] = int(bigger[i] % tiles[i])
- # This is adding the extra pixel (remainder) to all of the tiles:
- if tiles_extra_1[i] > 0:
- tile_size[i] = tile_base_size[i] + 1
- tileset_size[i] = int(tile_size[i] * tiles[i])
- # Add overlap to tiles (doesn't effect tileset_size
- tile_size_overlap[i] = tile_size[i] + int(options['overlap'])
-
- grass.verbose("There will be %d by %d tiles each %d by %d cells" % \
- (tiles[0], tiles[1], tile_size[0], tile_size[1]))
-
- ximax = tiles[0]
- yimax = tiles[1]
-
- min_x = source_bbox['w']
- min_y = source_bbox['s']
- max_x = source_bbox['e']
- max_y = source_bbox['n']
- span_x = (max_x - min_x)
- span_y = (max_y - min_y)
-
- xi = 0
- tile_bbox = { 'w' : -1, 's': -1, 'e' : -1, 'n' : -1 }
- while xi < ximax:
- tile_bbox['w'] = float(min_x) + (float(xi) * float(tile_size[0]) / float(tileset_size[0])) * float(span_x)
- tile_bbox['e'] = float(min_x) + (float(xi + 1) * float(tile_size_overlap[0]) / float(tileset_size[0])) * float(span_x)
- yi = 0
- while yi < yimax:
- tile_bbox['s'] = float(min_y) + (float(yi) * float(tile_size[1]) / float(tileset_size[1])) * float(span_y)
- tile_bbox['n'] = float(min_y) + (float(yi + 1) * float(tile_size_overlap[1]) / float(tileset_size[1])) * float(span_y)
- tile_bbox_points = bboxToPoints(tile_bbox)
- tile_dest_bbox_points = projectPoints(tile_bbox_points,
- source = srs_source,
- dest = srs_dest)
- tile_dest_bbox = pointsToBbox(tile_dest_bbox_points)
- if bboxesIntersect(tile_dest_bbox, dest_bbox):
- if flags['w']:
- print "bbox=%s,%s,%s,%s&width=%s&height=%s" % \
- (tile_bbox['w'], tile_bbox['s'], tile_bbox['e'], tile_bbox['n'],
- tile_size_overlap[0], tile_size_overlap[1])
- elif flags['g']:
- print "w=%s;s=%s;e=%s;n=%s;cols=%s;rows=%s" % \
- (tile_bbox['w'], tile_bbox['s'], tile_bbox['e'], tile_bbox['n'],
- tile_size_overlap[0], tile_size_overlap[1])
- else:
- print "%s%s%s%s%s%s%s%s%s%s%s" % \
- (tile_bbox['w'], fs, tile_bbox['s'], fs, tile_bbox['e'], fs, tile_bbox['n'], fs,
- tile_size_overlap[0], fs, tile_size_overlap[1])
- yi += 1
- xi += 1
-
- if __name__ == "__main__":
- cs2cs = 'cs2cs'
- options, flags = grass.parser()
- sys.exit(main())
|