123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- /*!
- * \file kdtree.h
- *
- * \brief Dynamic balanced k-d tree implementation
- *
- * k-d tree is a multidimensional (k-dimensional) binary search tree for
- * nearest neighbor search and is part of \ref btree2.
- *
- * Copyright and license:
- *
- * (C) 2014 by the GRASS Development Team
- *
- * This program is free software under the GNU General Public License
- * (>=v2). Read the file COPYING that comes with GRASS for details.
- *
- * \author Markus Metz
- *
- * \par References
- * Bentley, J. L. (1975). "Multidimensional binary search trees used for
- * associative searching". Communications of the ACM 18 (9): 509.
- * doi:10.1145/361002.361007
- *
- * \par Features
- * - This k-d tree is a dynamic tree:
- * elements can be inserted and removed any time.
- * - This k-d tree is balanced:
- * subtrees have a similar depth (the difference in subtrees' depths is
- * not allowed to be larger than the balancing tolerance).
- *
- * Here is a structure of basic usage:
- *
- * Create a new k-d tree:
- *
- * kdtree_create(...);
- *
- * Insert points into the tree:
- *
- * kdtree_insert(...);
- *
- * Optionally optimize the tree:
- *
- * kdtree_optimize(...);
- *
- * Search k nearest neighbors:
- *
- * kdtree_knn(...);
- *
- * Search all neighbors in radius:
- *
- * kdtree_dnn(...);
- *
- * Destroy the tree:
- *
- * kdtree_destroy(...);
- *
- * \todo
- * Doxygen ignores comment for last parameter after `);`.
- * The parameter description now goes to the end of function description.
- *
- * \todo
- * Include formatting to function descriptions.
- */
- /*!
- * \brief Node for k-d tree
- */
- struct kdnode
- {
- unsigned char dim; /*!< split dimension of this node */
- unsigned char depth; /*!< depth at this node */
- unsigned char balance; /*!< flag to indicate if balancing is needed */
- double *c; /*!< coordinates */
- int uid; /*!< unique id of this node */
- struct kdnode *child[2]; /*!< link to children: `[0]` for smaller, `[1]` for larger */
- };
- /*!
- * \brief k-d tree
- */
- struct kdtree
- {
- unsigned char ndims; /*!< number of dimensions */
- unsigned char *nextdim; /*!< split dimension of child nodes */
- int csize; /*!< size of coordinates in bytes */
- int btol; /*!< balancing tolerance */
- size_t count; /*!< number of items in the tree */
- struct kdnode *root; /*!< tree root */
- };
- /*!
- * \brief k-d tree traversal
- */
- struct kdtrav
- {
- struct kdtree *tree; /*!< tree being traversed */
- struct kdnode *curr_node; /*!< current node */
- struct kdnode *up[256]; /*!< stack of parent nodes */
- int top; /*!< index for stack */
- int first; /*!< little helper flag */
- };
- /*! creae a new k-d tree */
- struct kdtree *kdtree_create(char ndims, /*!< number of dimensions */
- int *btol /*!< optional balancing tolerance */
- );
- /*! destroy a tree */
- void kdtree_destroy(struct kdtree *t);
- /*! clear a tree, removing all entries */
- void kdtree_clear(struct kdtree *t);
- /*! insert an item (coordinates c and uid) into the k-d tree */
- int kdtree_insert(struct kdtree *t, /*!< k-d tree */
- double *c, /*!< coordinates */
- int uid, /*!< the point's unique id */
- int dc /*!< allow duplicate coordinates */
- );
- /*! remove an item from the k-d tree
- * coordinates c and uid must match */
- int kdtree_remove(struct kdtree *t, /*!< k-d tree */
- double *c, /*!< coordinates */
- int uid /*!< the point's unique id */
- );
- /*! find k nearest neighbors
- * results are stored in uid (uids) and d (squared distances)
- * optionally an uid to be skipped can be given
- * useful when searching for the nearest neighbors of an item
- * that is also in the tree */
- int kdtree_knn(struct kdtree *t, /*!< k-d tree */
- double *c, /*!< coordinates */
- int *uid, /*!< unique ids of the neighbors */
- double *d, /*!< squared distances to the neighbors */
- int k, /*!< number of neighbors to find */
- int *skip /*!< unique id to skip */
- );
- /*! find all nearest neighbors within distance aka radius search
- * results are stored in puid (uids) and pd (squared distances)
- * memory is allocated as needed, the calling fn must free the memory
- * optionally an uid to be skipped can be given */
- int kdtree_dnn(struct kdtree *t, /*!< k-d tree */
- double *c, /*!< coordinates */
- int **puid, /*!< unique ids of the neighbors */
- double **pd, /*!< squared distances to the neighbors */
- double maxdist, /*!< radius to search around the given coordinates */
- int *skip /*!< unique id to skip */
- );
- /*! find all nearest neighbors within range aka box search
- * the range is specified with min and max for each dimension as
- * (min1, min2, ..., minn, max1, max2, ..., maxn)
- * results are stored in puid (uids) and pd (squared distances)
- * memory is allocated as needed, the calling fn must free the memory
- * optionally an uid to be skipped can be given */
- int kdtree_rnn(struct kdtree *t, /*!< k-d tree */
- double *c, /*!< coordinates for range */
- int **puid, /*!< unique ids of the neighbors */
- int *skip /*!< unique id to skip */
- );
- /*! k-d tree optimization, only useful if the tree will be heavily used
- * (more searches than items in the tree)
- * level 0 = a bit, 1 = more, 2 = a lot */
- void kdtree_optimize(struct kdtree *t, /*!< k-d tree */
- int level /*!< optimization level */
- );
- /*! initialize tree traversal
- * (re-)sets trav structure
- * returns 0
- */
- int kdtree_init_trav(struct kdtrav *trav, struct kdtree *tree);
- /*! traverse the tree
- * useful to get all items in the tree non-recursively
- * struct kdtrav *trav needs to be initialized first
- * returns 1, 0 when finished
- */
- int kdtree_traverse(struct kdtrav *trav, double *c, int *uid);
|