csolv.c 2.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103
  1. /* csolv.c CCMATH mathematics library source code.
  2. *
  3. * Copyright (C) 2000 Daniel A. Atkinson All rights reserved.
  4. * This code may be redistributed under the terms of the GNU library
  5. * public license (LGPL). ( See the lgpl.license file for details.)
  6. * ------------------------------------------------------------------------
  7. */
  8. #include <stdlib.h>
  9. #include "ccmath.h"
  10. int csolv(Cpx * a, Cpx * b, int n)
  11. {
  12. int i, j, k, lc;
  13. Cpx *ps, *p, *q, *pa, *pd;
  14. Cpx z, h, *q0;
  15. double s, t, tq = 0., zr = 1.e-15;
  16. q0 = (Cpx *) calloc(n, sizeof(Cpx));
  17. pa = a;
  18. pd = a;
  19. for (j = 0; j < n; ++j, ++pa, pd += n + 1) {
  20. if (j > 0) {
  21. for (i = 0, p = pa, q = q0; i < n; ++i, p += n)
  22. *q++ = *p;
  23. for (i = 1; i < n; ++i) {
  24. lc = i < j ? i : j;
  25. z.re = z.im = 0.;
  26. for (k = 0, p = pa + i * n - j, q = q0; k < lc; ++k, ++q, ++p) {
  27. z.re += p->re * q->re - p->im * q->im;
  28. z.im += p->im * q->re + p->re * q->im;
  29. }
  30. q0[i].re -= z.re;
  31. q0[i].im -= z.im;
  32. }
  33. for (i = 0, p = pa, q = q0; i < n; ++i, p += n)
  34. *p = *q++;
  35. }
  36. s = fabs(pd->re) + fabs(pd->im);
  37. lc = j;
  38. for (k = j + 1, ps = pd; k < n; ++k) {
  39. ps += n;
  40. if ((t = fabs(ps->re) + fabs(ps->im)) > s) {
  41. s = t;
  42. lc = k;
  43. }
  44. }
  45. tq = tq > s ? tq : s;
  46. if (s < zr * tq) {
  47. free(q0);
  48. return -1;
  49. }
  50. if (lc != j) {
  51. h = b[j];
  52. b[j] = b[lc];
  53. b[lc] = h;
  54. p = a + n * j;
  55. q = a + n * lc;
  56. for (k = 0; k < n; ++k) {
  57. h = *p;
  58. *p++ = *q;
  59. *q++ = h;
  60. }
  61. }
  62. t = pd->re * pd->re + pd->im * pd->im;
  63. h.re = pd->re / t;
  64. h.im = -(pd->im) / t;
  65. for (k = j + 1, ps = pd + n; k < n; ++k, ps += n) {
  66. z.re = ps->re * h.re - ps->im * h.im;
  67. z.im = ps->im * h.re + ps->re * h.im;
  68. *ps = z;
  69. }
  70. }
  71. for (j = 1, ps = b + 1; j < n; ++j, ++ps) {
  72. for (k = 0, p = a + n * j, q = b, z.re = z.im = 0.; k < j; ++k) {
  73. z.re += p->re * q->re - p->im * q->im;
  74. z.im += p->im * q->re + p->re * q->im;
  75. ++p;
  76. ++q;
  77. }
  78. ps->re -= z.re;
  79. ps->im -= z.im;
  80. }
  81. for (j = n - 1, --ps, pd = a + n * n - 1; j >= 0; --j, pd -= n + 1) {
  82. for (k = j + 1, p = pd + 1, q = b + j + 1, z.re = z.im = 0.; k < n;
  83. ++k) {
  84. z.re += p->re * q->re - p->im * q->im;
  85. z.im += p->im * q->re + p->re * q->im;
  86. ++p;
  87. ++q;
  88. }
  89. h.re = ps->re - z.re;
  90. h.im = ps->im - z.im;
  91. t = pd->re * pd->re + pd->im * pd->im;
  92. ps->re = (h.re * pd->re + h.im * pd->im) / t;
  93. ps->im = (h.im * pd->re - h.re * pd->im) / t;
  94. --ps;
  95. }
  96. free(q0);
  97. return 0;
  98. }